当前位置: 首页 > article >正文

篇章五 数据结构——链表(一)

目录

1.ArrayList的缺陷

2. 链表

2.1 链表的概念及结构

2.2 链表结构

1. 单向或者双向

2.带头或者不带头

3.循环或者非循环

2.3 链表的实现

1.完整代码

2.图解

 3.显示方法

4.链表大小

5. 链表是否存在 key 值

6.头插法

7.尾插法

8.中间插入

9.删除key值节点

 10.删除所有key值节点

11.clear

3.练习

3.1 删除链表中等于给定值 val 的所有节点

3.2 反转一个单链表

3.3 给定一个带有头结点 head 的非空单链表,返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点

3.4 输入一个链表,输出该链表中倒数第k个结点

 3.5 将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的

3.6 编写代码,以给定值x为基准将链表分割成两部分,所有小于x的结点排在大于或等于x的结点之前

​编辑

3.7 链表的回文结构

3.8 输入两个链表,找出它们的第一个公共结点

3.9 给定一个链表,判断链表中是否有环

3.10 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 NULL


1.ArrayList的缺陷

通过篇章四,我们已经熟悉了ArrayList的使用,并且进行了简单模拟实现。通过源码知道,ArrayList底层使用数组来存储元素。

那这样会出现什么问题呢?

        由于其底层是一段连续空间,当在ArrayList任意位置插入或者删除元素时,就需要将后序元素整体往前或者往后搬移,时间复杂度为O(n),效率比较低。因此ArrayList不适合做任意位置插入和删除比较多的场景。因此:java集合中又引入了LinkedList,即链表结构。

2. 链表

2.1 链表的概念及结构

链表是一种 物理存储结构上非连续 存储结构,数据元素的 逻辑顺序 是通过链表中的 引用链接 次序实现的。

注意:
1.从上图可看出,链式结构在逻辑上是连续的,但是在物理上不一定连续
2.现实中的结点一般都是从堆上申请出来的
3.从堆上申请的空间,是按照一定的策略来分配的,两次申请的空间可能连续,也可能不连续

2.2 链表结构

实际中链表的结构非常多样,以下情况组合起来就有8种链表结构

1. 单向或者双向

什么是双向?

2.带头或者不带头

什么是带头?

什么是不带头?

3.循环或者非循环

什么是循环?

组合成的 8种链表结构

虽然有这么多的链表的结构,但是我们重点掌握两种:

1. 无头单向非循环链表结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。

2. 无头双向非循环链表:在Java的集合框架库中LinkedList底层实现就是无头双向循环链表。

2.3 链表的实现

1.完整代码


/*** Created with IntelliJ IDEA* Description  无头单向非循环链表实现* User: 王杰* Date: 2025-05-26* Time: 20:33*/
public class MySingleList implements IList{static class ListNode {public int val;public ListNode next;public ListNode(int val) {this.val = val;}}public ListNode head;// 创建链表public void createList() {ListNode node1 = new ListNode(12);ListNode node2 = new ListNode(23);ListNode node3 = new ListNode(34);ListNode node4 = new ListNode(45);ListNode node5 = new ListNode(56);node1.next = node2;node2.next = node3;node3.next = node4;node4.next = node5;this.head = node1;}// 显示方法@Overridepublic void display() {ListNode cur = head;while (cur != null) {System.out.print(cur.val + " ");cur = cur.next;}}// 链表大小@Overridepublic int size() {int len = 0;ListNode cur = head;while (cur != null) {len++;cur = cur.next;}return len;}// 链表是否存在 key 值@Overridepublic boolean contains(int key) {ListNode cur = head;while (cur != null) {if (cur.val == key) {return true;}cur = cur.next;}return false;}// 头插法@Overridepublic void addFirst(int data) {ListNode node = new ListNode(data);node.next = head;head = node;}// 尾插法@Overridepublic void addLast(int data) {ListNode node = new ListNode(data);// 一个节点都没有if (head == null) {head = node;return;}// 找尾巴ListNode cur = head;while (cur != null) {if (cur.next == null) {cur.next = node;return;}cur = cur.next;}}//中间插入@Overridepublic void addIndex(int index, int data) {int len = size();if (index < 0 || index > len) {System.out.println("index位置不存在");return;}if (index == 0) {addFirst(data);return;}if (index == len) {addLast(data);return;}// 中间插入ListNode cur = head;if (index - 1 != 0) {cur = cur.next;index--;}ListNode node = new ListNode(data);// 所有的插入 优先 绑定后边node.next = cur.next;cur.next = node;}// 删除 key值 节点@Overridepublic void remove(int key) {if (head == null) {return;}// 删除头节点if (head.val == key) {head = head.next;return;}ListNode cur = findNodeOfKey(key);if (cur == null) {return;}ListNode del = cur.next;cur.next = del.next;}private ListNode findNodeOfKey(int key) {ListNode cur = head;while (cur.next != null) {if (cur.next.val == key) {return cur;}cur = cur.next;}return null;}// 删除 所有key值 节点@Overridepublic void removeAllKey(int key) {if (head == null) {return;}ListNode prev = head;ListNode cur = head.next;while (cur != null) {if (cur.val == key) {prev.next = cur.next;cur = cur.next;}else {prev = cur;cur = cur.next;}}if (head.val == key) {head = head.next;}}@Overridepublic void clear() {ListNode cur = head;while (cur != null) {ListNode curNext = cur.next;cur.next = null;cur = curNext;}head = null;}}

2.图解

单向不带头非循环链表:

 3.显示方法

// 显示方法
@Override
public void display() {ListNode cur = head;while (cur != null) {System.out.print(cur.val + " ");cur = cur.next;}
}

4.链表大小

	// 链表大小@Overridepublic int size() {int len = 0;ListNode cur = head;while (cur != null) {len++;cur = cur.next;}return len;}

实现到这里,我们需要掌握的是:

1.ListNode cur = head; 

        此处申请了临时变量,因为数据存储在堆空间,而且 cur 也指向链表,所以改变有效。同时 此处也是为了不改变 head 的位置,因为后续要用head找到该链表,如果head位置变动了,就找不到该链表了。

2.cur != null;

        此处最后一个节点,是会运算的。最后,cur指向的是最后一个节点的下一个节点,也就是 null;

3.cur.next != null;

        此处最后一个节点,是不会运算的。最后,cur指向的是最后一个节点。

5. 链表是否存在 key 值

    // 链表是否存在 key 值@Overridepublic boolean contains(int key) {ListNode cur = head;while (cur != null) {if (cur.val == key) {return true;}cur = cur.next;}return false;}

6.头插法

    // 头插法@Overridepublic void addFirst(int data) {ListNode node = new ListNode(data);node.next = head;head = node;}

7.尾插法

	// 尾插法@Overridepublic void addLast(int data) {ListNode node = new ListNode(data);// 一个节点都没有if (head == null) {head = node;return;}// 找尾巴ListNode cur = head;while (cur != null) {if (cur.next == null) {cur.next = node;return;}cur = cur.next;}}

8.中间插入

	//中间插入@Overridepublic void addIndex(int index, int data) {int len = size();if (index < 0 || index > len) {System.out.println("index位置不存在");return;}if (index == 0) {addFirst(data);return;}if (index == len) {addLast(data);}// 中间插入ListNode cur = head;if (index - 1 != 0) {cur = cur.next;index--;}ListNode node = new ListNode(data);// 所有的插入 优先 绑定后边node.next = cur.next;cur.next = node;}

注意:

1.此处中间插入,关键是找到 要 插入的位置前一个位置

2.要牢记 所有的插入 优先 绑定后边

9.删除key值节点

	// 删除 key值 节点@Overridepublic void remove(int key) {if (head == null) {return;}// 删除头节点if (head.val == key) {head = head.next;return;}ListNode cur = findNodeOfKey(key);if (cur == null) {return;}ListNode del = cur.next;cur.next = del.next;}private ListNode findNodeOfKey(int key) {ListNode cur = head;while (cur.next != null) {if (cur.next.val == key) {return cur;}cur = cur.next;}return null;}

注意:

        找到 要删除的节点 的前一个节点

这一思路在单链表中很关键

 10.删除所有key值节点

	// 删除 所有key值 节点@Overridepublic void removeAllKey(int key) {if (head == null) {return;}ListNode prev = head;ListNode cur = head.next;while (cur != null) {if (cur.val == key) {prev.next = cur.next;cur = cur.next;}else {prev = cur;cur = cur.next;}}if (head.val == key) {head = head.next;}}

11.clear

    @Overridepublic void clear() {ListNode cur = head;while (cur != null) {ListNode curNext = cur.next;cur.next = null;cur = curNext;}head = null;}

注意:

         此处最后 head 也要置空

3.练习

3.1 删除链表中等于给定值 val 的所有节点

203. 移除链表元素 - 力扣(LeetCode)

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode removeElements(ListNode head, int val) {if (head == null) {return head;}ListNode prev = head;ListNode cur = head.next;while (cur != null) {if (cur.val == val) {prev.next = cur.next;cur = cur.next;}else {prev = cur;cur = cur.next;}}if (head.val == val) {head = head.next;}return head;}
}

203. 移除链表元素 - 力扣(LeetCode) 此处和 2.3 中的 10.删除所有key节点 一样

3.2 反转一个单链表

OJ链接

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseList(ListNode head) {if(head == null) {return head;}ListNode cur = head.next;head.next = null;while(cur != null) {ListNode curNext = cur.next;cur.next = head;head = cur;cur = curNext;}return head;}
}

3.3 给定一个带有头结点 head 的非空单链表,返回链表的中间结点。如果有两个中间结点,则返回第二个中间结点

OJ链接

  /*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/class Solution {public ListNode middleNode(ListNode head) {if(head == null) {return null;}ListNode fast = head;ListNode slow = head;while(fast != null && fast.next != null) {slow = slow.next;fast = fast.next.next;}     return slow;  }}

注意:

        做这些练习的时候,要考虑 空链表 的情况,也就是 head == null 

3.4 输入一个链表,输出该链表中倒数第k个结点

OJ链接

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public int kthToLast(ListNode head, int k) {if(head == null) {return -1;}ListNode fast = head;ListNode slow = head;// fast 走 k - 1 步int count = 0;        while(count != k - 1) {fast = fast.next;count++;}while(fast.next != null) {slow = slow.next;fast = fast.next;}return slow.val;}
}

注意:

1. fast.next != null;

        此处 fast 走到最后一个节点即可,不必走到 null

2.此处 k 值,不确定是否合法,一般题目中会设置范围,但是没设置的话就需要补充上k值合法性的校验

补充:验证 k 的合法性

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public int kthToLast(ListNode head, int k) {if(head == null) {return -1;}if(k <= 0) {return -1;}ListNode fast = head;ListNode slow = head;// fast 走 k - 1 步int count = 0;        while(count != k - 1) {fast = fast.next;if(fast == null) {return -1;}count++;}while(fast.next != null) {slow = slow.next;fast = fast.next;}return slow.val;}
}

 3.5 将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的

OJ链接

  /*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/class Solution {public ListNode mergeTwoLists(ListNode list1, ListNode list2) {ListNode newHead = new ListNode();ListNode cur = newHead;while(list1 != null && list2 != null) {if(list1.val > list2.val) {cur.next = list2;list2 = list2.next;cur = cur.next;}else {cur.next = list1;list1 = list1.next;cur = cur.next;}}if(list1 != null) {cur.next = list1;}if(list2 != null) {cur.next = list2;}return newHead.next;}}

3.6 编写代码,以给定值x为基准将链表分割成两部分,所有小于x的结点排在大于或等于x的结点之前

OJ链接

import java.util.*;/*
public class ListNode {int val;ListNode next = null;ListNode(int val) {this.val = val;}
}*/
public class Partition {public ListNode partition(ListNode pHead, int x) {ListNode cur = pHead;ListNode beforStart = null;ListNode beforEnd = null;ListNode afterStart = null;ListNode afterEnd = null;while(cur != null) {if(cur.val < x) {if(beforStart == null) {beforStart = cur;beforEnd = cur;}else {beforEnd.next = cur;beforEnd = beforEnd.next;}cur = cur.next;}else {if(afterStart == null) {afterStart = cur;afterEnd = cur;}else {afterEnd.next = cur;afterEnd = afterEnd.next;}cur = cur.next;}  }if(beforStart == null) {return afterStart;}// 置空 afterEnd.nextif(afterStart != null) {afterEnd.next = null;}beforEnd.next = afterStart;return beforStart;}
}

注意:

此处思路:是把 大于x 和 小于x 的值分为两个链表。

但是:注意特殊情况,比如大于x的链表为空 和 小于x的链表为空。

而且:要注意,在 小于x的链表不为空时, 置空 afterEnd.next

3.7 链表的回文结构

OJ链接

import java.util.*;/*
public class ListNode {int val;ListNode next = null;ListNode(int val) {this.val = val;}
}*/
public class PalindromeList {public boolean chkPalindrome(ListNode A) {if(A == null) {return true;}ListNode fast = A;ListNode slow = A;while(fast != null && fast.next != null) {fast = fast.next.next;slow = slow.next;}ListNode cur = slow.next;while(cur != null) {ListNode curNext = cur.next;cur.next = slow;slow = cur;cur =curNext;} while(A != slow) {if(A.val != slow.val) {return false;}// 偶数情况if(A.next == slow) {return true;}A = A.next;slow = slow.next;}return true;}
}

注意:

1.  三步走:找中间节点,反转中间节点后的链表,比较前半部分和后半部分链表的val值

2. 偶数情况:
            if(A.next == slow) {
                return true;
            }

3.8 输入两个链表,找出它们的第一个公共结点

OJ链接

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public ListNode getIntersectionNode(ListNode headA, ListNode headB) {ListNode pLong = headA;ListNode pShort = headB;// 先求两个链表的长度int lenA = 0;int lenB = 0;while(pLong != null) {lenA++;pLong = pLong.next;}while(pShort != null) {lenB++;pShort = pShort.next;}pLong = headApShort = headB// 求差值int len = lenA - lenB;if(len < 0) {pLong = lenB;pShort = lenA;len = lenB - lenA;}// 走完上述两步 pLong 一定指向最长的链表  pShort 一定指向最短的链表// 接下来的操作 只需要操作 pLong 和 pShort 就行了// 让最长的链表走 len 步while(len != 0) {pLong = pLong.next;len--;}// 两个引用同时走 直到他们相遇while(pLong != pShort) {pLong = pLong.next;pShort = pShort.next;}if(pLong == null) {return null; // 不相交}return pLong;}
}

注意:

1.主要思路就是:走两个链表长度的差值步

2. 此处注意还原 pLong 和 pShort ,因为算长度,他们的位置发生了改变,要还原,否则影响下面代码

        pLong = headA
        pShort = headB

3.注意不相交的情况:

        if(pLong == null) {
            return null; // 不相交
        }

3.9 给定一个链表,判断链表中是否有环

OJ链接

/*** Definition for singly-linked list.* class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public boolean hasCycle(ListNode head) {if(head == null) {return false;}if(head.next == null) {return false;}ListNode fast = head;ListNode slow = head;while(fast != null && fast.next != null) {fast = fast.next.next;slow = slow.next;if(fast == slow) {return true;}}return false;}
}

【思路】

        快慢指针,即慢指针一次走一步,快指针一次走两步,两个指针从链表起始位置开始运行,如果链表带环则一定会在环中相遇,否则快指针率先走到链表的末尾。比如:陪女朋友到操作跑步减肥。

【扩展问题】

  • 为什么快指针每次走两步,慢指针走一步可以?

    假设链表带环,两个指针最后都会进入环,快指针先进环,慢指针后进环。当慢指针刚进环时,可能就和快

    指针相遇了,最差情况下两个指针之间的距离刚好就是环的长度。此时,两个指针每移动一次,之间的距离就缩小一步,不会出现每次刚好是套圈的情况,因此:在慢指针走到一圈之前,快指针肯定是可以追上慢指针的,即相遇。

  • 快指针一次走3步,走4步,...n步行吗?

 注意:

1.链表为空,和只有一个节点的情况是不存在环的

        if(head == null) {
            return false;
        }

        if(head.next == null) {
            return false;
        }

2.快慢指针的步数问题:

        快 2 慢 2:会相遇

        快3 慢 1 :永不相遇

可见:并不是快指针比慢指针快就行,还得注意步数问题。

3.10 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 NULL

OJ链接

/*** Definition for singly-linked list.* class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public ListNode detectCycle(ListNode head) {ListNode fast = head;ListNode slow = head;if(head == null) {return null;}if(head.next == null) {return null;}while(fast != null && fast.next != null) {fast = fast.next.next;slow = slow.next;if(fast == slow) {break;}}if(fast == null || fast.next == null) {return null; // 没有环}slow = head;while(slow != fast) {fast = fast.next;slow = slow.next;}return slow;}
}

【结论】

        让一个指针从链表起始位置开始遍历链表,同时让一个指针从判环时相遇点的位置开始绕环运行,两个指针都是每次均走一步,最终肯定会在入口点的位置相遇。

【证明】

 注意:

1.链表为空,和只有一个节点的情况是不存在环的

        if(head == null) {
            return false;
        }

        if(head.next == null) {
            return false;
        }

2.相遇时出循环:

        while(fast != null && fast.next != null) {
            fast = fast.next.next;
            slow = slow.next;
            if(fast == slow) {
                break;
            }
        }

3.去除没有环的情况:

        if(fast == null || fast.next == null) {
            return null; // 没有环
        }

4.关键:让慢指针回到链表开头,然后慢指针与快指针以相同的速度走

        slow = head;
        while(slow != fast) {
            fast = fast.next;
            slow = slow.next;
        }

5.证明:此处最关键的是,fast的路程是slow路程的二倍,建立等式,计算,取极端情况 得出关系,写代码。

相关文章:

篇章五 数据结构——链表(一)

目录 1.ArrayList的缺陷 2. 链表 2.1 链表的概念及结构 2.2 链表结构 1. 单向或者双向 2.带头或者不带头 3.循环或者非循环 2.3 链表的实现 1.完整代码 2.图解 3.显示方法 4.链表大小 5. 链表是否存在 key 值 6.头插法 7.尾插法 8.中间插入 9.删除key值节点 10.…...

一文清晰理解目标检测指标计算

一、核心概念 1.交并比IoU 预测边界框与真实边界框区域的重叠比&#xff0c;取值范围为[0,1] 设预测边界框为&#xff0c;真实边界框为 公式&#xff1a; IoU计算为两个边界框交集面积与并集面积之比&#xff0c;图示如下 IoU值越高&#xff0c;表示预测边界框与真实边界框的对…...

【MySQL】索引下推减少回表次数

一、简述索引下推 “索引下推”是数据库领域的一个术语&#xff0c;主要出现在MySQL&#xff08;尤其是InnoDB存储引擎&#xff09;中&#xff0c;英文名叫 Index Condition Pushdown&#xff0c;简称 ICP。就是过滤的动作由下层的存储引擎层通过使用索引来完成&#xff0c;而…...

Artificial Analysis2025年Q1人工智能发展六大趋势总结

2025年第一季度人工智能发展六大趋势总结 ——基于《Artificial Analysis 2025年Q1人工智能报告》 趋势一&#xff1a;AI持续进步&#xff0c;竞争格局白热化 前沿模型竞争加剧&#xff1a;OpenAI凭借“o4-mini&#xff08;高智能版&#xff09;”保持领先&#xff0c;但谷歌&…...

DeepSeek模型高级应用:提示工程与Few-shot学习实战指南

引言 在DeepSeek模型的实际应用中,提示工程(Prompt Engineering)和Few-shot学习正成为提升模型性能的关键技术。相比全参数微调,这些技术能以更低成本实现领域适配。本文将深入解析DeepSeek模型的高级提示技巧、动态Few-shot实现方案,以及混合微调策略,帮助开发者在资源受…...

Android高级开发第三篇 - JNI异常处理与线程安全编程

Android高级开发第三篇 - JNI异常处理与线程安全编程 Android高级开发第三篇 - JNI异常处理与线程安全编程引言为什么要关注异常处理和线程安全&#xff1f;第一部分&#xff1a;JNI异常处理基础什么是JNI异常&#xff1f;检查和处理Java异常从C代码抛出Java异常异常处理的最佳…...

企业级应用狂潮:从Spotify到LinkedIn的Llama实战手册

当Spotify用Llama生成的个性化推荐文案让用户播放时长激增30%, 当LinkedIn靠开源框架将社交推荐延迟降低40%—— 企业级AI战场正经历从“技术炫技”到“利润引擎”的残酷蜕变。 核心数据:企业采用率爆发式增长(2025 Gartner调研) 指标2023年2025年增幅开源模型采用率42%87%…...

高效管理 Python 项目的 UV 工具指南

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 持续学习&#xff0c;不断…...

QT中子线程触发主线程弹窗并阻塞等待用户响应

目录 QT中子线程触发主线程弹窗并阻塞等待用户响应一、使用QMetaObject::invokeMethod实现子线程安全触发主线程弹窗并阻塞等待&#xff1a;&#x1f527; Qt多线程弹窗&#xff1a;安全阻塞等待方案&#xff08;QMetaObject::invokeMethod详解&#xff09;&#x1f9e0; 一、核…...

初识vue3(vue简介,环境配置,setup语法糖)

一&#xff0c;前言 今天学习vue3 二&#xff0c;vue简介及如何创建vue工程 Vue 3 简介 Vue.js&#xff08;读音 /vjuː/&#xff0c;类似 “view”&#xff09;是一款流行的渐进式 JavaScript 框架&#xff0c;用于构建用户界面。Vue 3 是其第三代主要版本&#xff0c;于 …...

HarmonyOS NEXT~鸿蒙开发工具CodeGenie:AI驱动的开发效率革命

HarmonyOS NEXT&#xff5e;鸿蒙开发工具CodeGenie&#xff1a;AI驱动的开发效率革命 一、CodeGenie概述 DevEco CodeGenie是华为鸿蒙开发生态中的一款AI辅助编程工具&#xff0c;集成于DevEco Studio IDE中&#xff0c;为开发者提供全方位的智能编程支持。这款工具通过AI技术…...

LeetCode-链表操作题目

虚拟头指针&#xff0c;在当前head的前面建立一个虚拟头指针&#xff0c;然后哪怕当前的head的val等于提供的val也能进行统一操作 203移除链表元素简单题 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(…...

【ARM】MDK浏览信息的生成对于构建时间的影响

1、 文档目标 用于了解MDK的代码浏览信息的生成对于工程的构建是否会产生影响。 2、 问题场景 客户在MDK中使用Compiler 5对于工程进行构建过程中发现&#xff0c;对于是否产生浏览信息会对于构建时间产生一定的影响。在Options中Output栏中勾选了Browse Information后&#…...

Python模块中__all__变量失效问题深度解析

文章目录 Python模块中__all__变量失效问题深度解析一、__all__ 的正确作用场景二、__all__ 不起作用的常见原因1. 未使用 from ... import \* 导入2. __all__ 定义不完整或错误3. 子模块未正确导出4. Python 解释器缓存问题5. 相对导入路径错误 三、解决方案1. 确保使用 from …...

py爬虫的话,selenium是不是能完全取代requests?

selenium适合动态网页抓取&#xff0c;因为它可以控制浏览器去点击、加载网页&#xff0c;requests则比较适合静态网页采集&#xff0c;它非常轻量化速度快&#xff0c;没有浏览器开销&#xff0c;占用资源少。当然如果不考虑资源占用和速度&#xff0c;selenium是可以替代requ…...

docker B站学习

镜像是一个只读的模板&#xff0c;用来创建容器 容器是docker的运行实例&#xff0c;提供了独立可移植的环境 https://www.bilibili.com/video/BV11L411g7U1?spm_id_from333.788.videopod.episodes&vd_sourcee60c804914459274157197c4388a4d2f&p3 目录挂载 尚硅谷doc…...

SpringBoot高校宿舍信息管理系统小程序

概述 基于SpringBoot的高校宿舍信息管理系统小程序项目&#xff0c;这是一款非常适合高校使用的信息化管理工具。该系统包含了完整的宿舍管理功能模块&#xff0c;采用主流技术栈开发&#xff0c;代码结构清晰&#xff0c;非常适合学习和二次开发。 主要内容 这个宿舍管理系…...

深度解析 Dockerfile 配置:构建高效轻量的FastAPI 应用镜像

目录 引言 Dockerfile构建FastAPI镜像的示例 一、基础镜像选择&#xff1a;轻量与安全优先 二、元数据声明&#xff1a;镜像维护者信息 三、依赖管理&#xff1a;分层构建与缓存优化 1. 复制依赖文件 2. 安装依赖 四、应用代码复制&#xff1a;最小化镜像内容 五、启动…...

ICASSP2025丨融合语音停顿信息与语言模型的阿尔兹海默病检测

阿尔兹海默病&#xff08;Alzheimers Disease, AD&#xff09;是一种以认知能力下降和记忆丧失为特征的渐进性神经退行性疾病&#xff0c;及早发现对于其干预和治疗至关重要。近期&#xff0c;清华大学语音与音频技术实验室&#xff08;SATLab&#xff09;提出了一种将停顿信息…...

[蓝桥杯]春晚魔术【算法赛】

目录 输入格式 输出格式 样例输入 样例输出 运行限制 解决思路 代码说明 复杂度分析 问题描述 在蓝桥卫视春晚的直播现场&#xff0c;魔术师小蓝表演了一个红包魔术。只见他拿出了三个红包&#xff0c;里边分别装有 A、B 和 C 个金币。而后&#xff0c;他挥动魔术棒&a…...

LeetCode - 965. 单值二叉树

目录 题目 深度优先搜索方法 正确的写法 题目 965. 单值二叉树 - 力扣&#xff08;LeetCode&#xff09; 深度优先搜索方法 什么是深度优先搜索&#xff1a;深度优先搜索(DFS)是一种图或树的遍历算法&#xff0c;它从起始节点开始&#xff0c;尽可能深地沿着一条路径探索&…...

LabVIEW杂草识别与精准喷洒

基于LabVIEW构建了一套集成机器视觉、智能决策与精准控制的农业杂草识别系统。通过高分辨率视觉传感器采集作物图像&#xff0c;利用 LabVIEW 的 NI Vision 模块实现图像颜色匹配与特征分析&#xff0c;结合 Arduino 兼容的工业级控制硬件&#xff0c;实现杂草定位与除草剂精准…...

分布式不同数据的一致性模型

1. 强一致性&#xff08;Strong Consistency&#xff09; 定义&#xff1a;所有节点在任何时间点看到的数据完全一致&#xff0c;读操作总是返回最近的写操作结果。特点&#xff1a; 写操作完成后&#xff0c;所有后续读操作都能立即看到更新。通常需要同步机制&#xff08;如…...

“application/json“,“text/plain“ 分别表示什么

这两个字符串&#xff1a;“application/json” 和 “text/plain” 是 MIME 类型&#xff08;媒体类型&#xff09;&#xff0c;用于告诉接收方消息内容的格式&#xff0c;它们出现在 ContentType 字段中。 它告诉系统或程序&#xff1a;“这段数据是什么格式&#xff1f;” 格…...

SQL: 窗口滑动(Sliding Window)

目录 什么是“窗口”&#xff1f; 什么是“滑动”&#xff1f; &#x1f50d; 滑动窗口的核心&#xff1a; &#x1f552; 什么是时间窗口&#xff1f;&#xff08;Time Window&#xff09; 时间窗口的基本结构 时间窗口的三种常见形式 &#x1f4ca; 什么是行窗口&…...

学习日记-day20-6.1

完成目标&#xff1a; 知识点&#xff1a; 1.集合_Collections集合工具类 方法:static <T> boolean addAll(Collection<? super T> c, T... elements)->批量添加元素 static void shuffle(List<?> list) ->将集合中的元素顺序打乱static <T>…...

【音视频】 FFmpeg 解码H265

一、概述 实现了使用FFmpeg读取对应H265文件&#xff0c;并且保存为对应的yuv文件 二、实现流程 读取文件 将H265/H264文件放在build路径下&#xff0c;然后指定输出为yuv格式 在main函数中读取外部参数 if (argc < 2){fprintf(stderr, "Usage: %s <input file&…...

Linux 系统 Docker Compose 安装

个人博客地址&#xff1a;Linux 系统 Docker Compose 安装 | 一张假钞的真实世界 本文方法是直接下载 GitHub 项目的 release 版本。项目地址&#xff1a;GitHub - docker/compose: Define and run multi-container applications with Docker。 执行以下命令将发布程序加载至…...

软件测试|FIT故障注入测试工具——ISO 26262合规下的智能汽车安全验证引擎

FIT&#xff08;Fault Injection Tester&#xff09;是SURESOFT专为汽车电子与工业控制设计的自动化故障注入测试工具​&#xff0c;基于ISO 26262等国际安全标准开发&#xff0c;旨在解决传统测试中效率低、成本高、安全隐患难以复现的问题&#xff0c;其核心功能包括&#xf…...

3D拟合测量水杯半径

1&#xff0c;目的。 测量水杯的半径 如图所示&#xff1a; 2&#xff0c;原理。 对 3D 点云对象 进行圆柱体拟合&#xff0c;获取拟合后的半径。 3&#xff0c;注意事项。 在Halcon中使用fit_primitives_object_model_3d进行圆柱体拟合时&#xff0c;输出的primitive_para…...