当前位置: 首页 > article >正文

【Linux网络】传输层TCP协议

   🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm=1010.2135.3001.5343
🔥 系列专栏:https://blog.csdn.net/qinjh_/category_12891150.html

9efbcbc3d25747719da38c01b3fa9b4f.gif

目录

TCP 协议

TCP 协议段格式

确认应答(ACK)机制

超时重传机制

连接管理机制

理解 TIME_WAIT 状态

 解决 TIME_WAIT 状态引起的 bind 失败的方法

滑动窗口

流量控制 

 拥塞控制

延迟应答 

捎带应答

面向字节流

粘包问题 

 TCP 异常情况

TCP/UDP 对比 


前言

    💬 hello! 各位铁子们大家好哇。

             今日更新了Linux网络tcp协议的内容
    🎉 欢迎大家关注🔍点赞👍收藏⭐️留言📝

TCP 协议

TCP 全称为 "传输控制协议(Transmission Control Protocol"). 人如其名, 要对数据的传输进行一个详细的控制;

TCP 协议段格式

  • 源/目的端口号: 表示数据是从哪个进程来, 到哪个进程去;
  • 32 位序号/32 位确认号;
  • 4 位 TCP 报头长度: 表示该 TCP 头部有多少个 32 位 bit(有多少个4 字节); 所以TCP 头部最大长度是 15 * 4 = 60 字节,最短长度是固定的20字节。
  • 6 位标志位:
    • URG: 紧急指针是否有效
    • ACK: 确认号是否有效
    • PSH: 提示接收端应用程序立刻从 TCP 缓冲区把数据读走
    • RST: 对方要求重新建立连接; 我们把携带 RST 标识的称为复位报文段
    • SYN: 请求建立连接; 我们把携带 SYN 标识的称为同步报文段
    • FIN: 通知对方, 本端要关闭了, 我们称携带 FIN 标识的为结束报文段
  • 16 位窗口大小;
  • 16 位校验和: 发送端填充, CRC 校验. 接收端校验不通过, 则认为数据有问题. 此处的检验和不光包含 TCP 首部, 也包含 TCP 数据部分.
  • 16 位紧急指针: 标识哪部分数据是紧急数据;
  • 40 字节头部选项;

确认应答(ACK)机制

TCP 将每个字节的数据都进行了编号. 即为序列号

每一个 ACK 都带有对应的确认序列号, 意思是告诉发送者, 我已经收到了哪些数据; 下一次你从哪里开始发

只要有应答,接收端就肯定收到了。

不需要对应答进行应答。

如果收不到应答,就认为丢失;收到应答,接收端肯定收到数据了。(可靠性)

双方都采用确认应答机制,来保证两个朝向上数据通信的可靠性。

TCP有两种基本的通信模式:

 

第一种是发一个消息就给一个应答。但是效率比较低。

第二种是一次发送多个报文,然后进行批量化应答。这样就提高了发送效率。

假如发送了四条信息,却只收到三条应答,我们要怎么知道哪条应答对应哪个报文呢? 

每一个报文都会携带对应的序号,应答对应的确认序号,就是报文序号+1。

确认序号3001的含义:3001之前的数据全部收到,即还包含了2000,1000的报文。

这么看,好像只需要一个序号就可以了,为什么还要分两个序号呢?

服务器端也会发送数据。如果客户端给服务器发数据,此时服务器要应答,刚好服务器也有数据要发送,那么服务器就会把应答和数据两个报文合并到一起,变成一个报文,叫做捎带应答。此时就需要两个序号了。

TCP协议要有处理不同类型的报文的能力,即:tcp的报文是有不同的类型的 。

超时重传机制

  • 主机 A 发送数据给 B 之后, 可能因为网络拥堵等原因, 数据无法到达主机B;
  • 如果主机 A 在一个特定时间间隔内没有收到 B 发来的确认应答, 就会进行重发;

但是, 主机 A 未收到 B 发来的确认应答, 也可能是因为 ACK 丢失了;

因此主机 B 会收到很多重复数据. 那么 TCP 协议需要能够识别出哪些包是重复的包, 并且把重复的丢弃掉. 这时候我们可以利用前面提到的序列号, 就可以很容易做到去重的效果. 那么, 如果超时的时间如何确定?

  • 最理想的情况下, 找到一个最小的时间, 保证 "确认应答一定能在这个时间内返回".
  • 但是这个时间的长短, 随着网络环境的不同, 是有差异的.
  • 如果超时时间设的太长, 会影响整体的重传效率;
  • 如果超时时间设的太短, 有可能会频繁发送重复的包;

TCP 为了保证无论在任何环境下都能比较高性能的通信, 因此会动态计算这个最大超时时间.

  • Linux 中(BSD Unix 和 Windows 也是如此), 超时以 500ms 为一个单位进行控制, 每次判定超时重发的超时时间都是 500ms 的整数倍.
  • 如果重发一次之后, 仍然得不到应答, 等待 2*500ms 后再进行重传.
  • 如果仍然得不到应答, 等待 4*500ms 进行重传. 依次类推, 以指数形式递增.
  • 累计到一定的重传次数, TCP 认为网络或者对端主机出现异常, 强制关闭连接. 

连接管理机制

在正常情况下, TCP 要经过三次握手建立连接, 四次挥手断开连接

服务端状态转化:

  • [CLOSED -> LISTEN] 服务器端调用 listen 后进入 LISTEN 状态, 等待客户端连接;
  • [LISTEN -> SYN_RCVD] 一旦监听到连接请求(同步报文段), 就将该连接放入内核等待队列中, 并向客户端发送 SYN 确认报文.
  • [SYN_RCVD -> ESTABLISHED] 服务端一旦收到客户端的确认报文, 就进入ESTABLISHED 状态, 可以进行读写数据了.
  • [ESTABLISHED -> CLOSE_WAIT] 当客户端主动关闭连接(调用close), 服务器会收到结束报文段, 服务器返回确认报文段并进入 CLOSE_WAIT;
  • [CLOSE_WAIT -> LAST_ACK] 进入 CLOSE_WAIT 后说明服务器准备关闭连接(需要处理完之前的数据); 当服务器真正调用 close 关闭连接时, 会向客户端发送FIN, 此时服务器进入 LAST_ACK 状态, 等待最后一个 ACK 到来(这个ACK 是客户端确认收到了 FIN)
  • [LAST_ACK -> CLOSED] 服务器收到了对 FIN 的 ACK, 彻底关闭连接. 

客户端状态转化:

  • [CLOSED -> SYN_SENT] 客户端调用 connect, 发送同步报文段;
  • [SYN_SENT -> ESTABLISHED] connect 调用成功, 则进入ESTABLISHED状态, 开始读写数据;
  • [ESTABLISHED -> FIN_WAIT_1] 客户端主动调用 close 时, 向服务器发送结束报文段, 同时进入 FIN_WAIT_1;
  • [FIN_WAIT_1 -> FIN_WAIT_2] 客户端收到服务器对结束报文段的确认, 则进入 FIN_WAIT_2, 开始等待服务器的结束报文段;
  • [FIN_WAIT_2 -> TIME_WAIT] 客户端收到服务器发来的结束报文段, 进入TIME_WAIT, 并发出 LAST_ACK;
  • [TIME_WAIT -> CLOSED] 客户端要等待一个 2MSL(Max Segment Life, 报文最大生存时间)的时间, 才会进入 CLOSED 状态

建立连接的本质就是在赌,赌最后一个ACK对方一定收到了。

四次挥手:最小的通信成本,建立了断开连接的共识。

为什么建立连接要三次握手?
答:1.验证全双工--验证网络的连通性。2.建立双方通信的共识意愿。

比如男女生交往。男生得问女生愿不愿意,女生要回答。女生也得问男生愿不愿意,男生也得回答。 

四次挥手:主动断开连接的一方,会在第四次挥手完成,等待一定的时长,

理解 TIME_WAIT 状态

做一个测试,首先启动 server,然后启动 client,然后用 Ctrl-C 使server 终止,这时马上再运行 server。虽然 server 的应用程序终止了,但 TCP 协议层的连接并没有完全断开,因此不能再次监听同样的 server 端口 

  • TCP 协议规定,主动关闭连接的一方要处于 TIME_ WAIT 状态,等待两个MSL(maximum segment lifetime)的时间后才能回到 CLOSED 状态.
  • 我们使用 Ctrl-C 终止了 server, 所以 server 是主动关闭连接的一方, 在TIME_WAIT 期间仍然不能再次监听同样的 server 端口;
    • MSL 在 RFC1122 中规定为两分钟,但是各操作系统的实现不同, 在Centos7 上默认配置的值是 60s;

为什么是 TIME_WAIT 的时间是 2MSL?

  • MSL 是 TCP 报文的最大生存时间, 因此 TIME_WAIT 持续存在2MSL 的话,就能保证在两个传输方向上的尚未被接收或迟到的报文段都已经消失(否则服务器立刻重启, 可能会收到来自上一个进程的迟到的数据, 但是这种数据很可能是错误的);
  • 同时也是在理论上保证最后一个报文可靠到达(假设最后一个ACK 丢失, 那么服务器会再重发一个 FIN. 这时虽然客户端的进程不在了, 但是TCP 连接还在, 仍然可以重发 LAST_ACK); 

 解决 TIME_WAIT 状态引起的 bind 失败的方法

在 server 的 TCP 连接没有完全断开之前不允许重新监听, 某些情况下可能是不合理的

  •  服务器需要处理非常大量的客户端的连接(每个连接的生存时间可能很短, 但是每秒都有很大数量的客户端来请求).
  • 这个时候如果由服务器端主动关闭连接(比如某些客户端不活跃, 就需要被服务器端主动清理掉), 就会产生大量 TIME_WAIT 连接.
  • 由于我们的请求量很大, 就可能导致 TIME_WAIT 的连接数很多, 每个连接都会占用一个通信五元组(源 ip, 源端口, 目的 ip, 目的端口, 协议). 其中服务器的ip 和端口和协议是固定的. 如果新来的客户端连接的 ip 和端口号和 TIME_WAIT 占用的链接重复了, 就会出现问题

使用 setsockopt()设置 socket 描述符的 选项 SO_REUSEADDR 为1, 表示允许创建端口号相同但 IP 地址不同的多个 socket 描述符 

滑动窗口

刚才我们讨论了确认应答策略, 对每一个发送的数据段, 都要给一个ACK 确认应答. 收到 ACK 后再发送下一个数据段. 这样做有一个比较大的缺点, 就是性能较差. 尤其是数据往返的时间较长的时候. 

既然这样一发一收的方式性能较低, 那么我们一次发送多条数据, 就可以大大的提高性能(其实是将多个段的等待时间重叠在一起了).

  • 窗口大小指的是无需等待确认应答而可以继续发送数据的最大值. 上图的窗口大小就是 4000 个字节(四个段).
  • 发送前四个段的时候, 不需要等待任何 ACK, 直接发送;
  • 收到第一个 ACK 后, 滑动窗口向后移动, 继续发送第五个段的数据; 依次类推;
  • 操作系统内核为了维护这个滑动窗口, 需要开辟发送缓冲区来记录当前还有哪些数据没有应答; 只有确认应答过的数据, 才能从缓冲区删掉;
  • 窗口越大, 则网络的吞吐率就越高; 

那么如果出现了丢包, 如何进行重传? 这里分两种情况讨论.

情况一: 数据包已经抵达, ACK 被丢了. 

 这种情况下, 部分 ACK 丢了并不要紧, 因为可以通过后续的 ACK 进行确认;

情况二: 数据包就直接丢了 

  • 当某一段报文段丢失之后, 发送端会一直收到 1001 这样的ACK, 就像是在提醒发送端 "我想要的是 1001" 一样;
  • 如果发送端主机连续三次收到了同样一个 "1001" 这样的应答, 就会将对应的数据 1001 - 2000 重新发送;
  • 这个时候接收端收到了 1001 之后, 再次返回的 ACK 就是7001 了(因为2001- 7000)接收端其实之前就已经收到了, 被放到了接收端操作系统内核的接收缓冲区中; 这种机制被称为 "高速重发控制"(也叫 "快重传").
  • 滑动窗口也支持超时重传,超时重传:超时时间内,已经发送的报文不能被丢弃,而是要保存起来。

流量控制 

接收端处理数据的速度是有限的. 如果发送端发的太快, 导致接收端的缓冲区被打满, 这个时候如果发送端继续发送, 就会造成丢包, 继而引起丢包重传等等一系列连锁反应. 因此 TCP 支持根据接收端的处理能力, 来决定发送端的发送速度. 这个机制就叫做流量控制(Flow Control); 

  • 接收端将自己可以接收的缓冲区大小放入 TCP 首部中的"窗口大小" 字段, 通过 ACK 端通知发送端;
  • 窗口大小字段越大, 说明网络的吞吐量越高;
  • 接收端一旦发现自己的缓冲区快满了, 就会将窗口大小设置成一个更小的值通知给发送端;
  • 发送端接受到这个窗口之后, 就会减慢自己的发送速度;
  • 如果接收端缓冲区满了, 就会将窗口置为 0; 这时发送方不再发送数据, 但是需要定期发送一个窗口探测数据段, 使接收端把窗口大小告诉发送端. 

接收端如何把窗口大小告诉发送端呢?

回忆我们的 TCP 首部中, 有一个16 位窗口字段, 就是存放了各自窗口大小信息; 那么问题来了, 16 位数字最大表示 65535, 那么 TCP 窗口最大就是65535 字节么?

实际上, TCP 首部 40 字节选项中还包含了一个窗口扩大因子 M, 实际窗口大小是窗口字段的值左移 M 位。

 拥塞控制

 虽然 TCP 有了滑动窗口这个大杀器, 能够高效可靠的发送大量的数据. 但是如果在刚开始阶段就发送大量的数据, 仍然可能引发问题.

因为网络上有很多的计算机, 可能当前的网络状态就已经比较拥堵. 在不清楚当前网络状态下, 贸然发送大量的数据, 是很有可能引起雪上加霜的.

TCP 引入 慢启动 机制, 先发少量的数据, 探探路, 摸清当前的网络拥堵状态, 再决定按照多大的速度传输数据;

  • 此处引入一个概念称为拥塞窗口
  • 发送开始的时候, 定义拥塞窗口大小为 1;
  • 每次收到一个 ACK 应答, 拥塞窗口加 1;
  • 每次发送数据包的时候, 将拥塞窗口和接收端主机反馈的窗口大小做比较, 取较小的值作为实际发送的窗口; 
  • 滑动窗口=min(应答窗口,拥塞窗口) 即既要考虑网络情况,又要考虑对方的接收能力

像上面这样的拥塞窗口增长速度, 是指数级别的. "慢启动" 只是指初使时慢, 但是增长速度非常快。

  • 为了不增长的那么快, 因此不能使拥塞窗口单纯的加倍.
  • 此处引入一个叫做慢启动的阈值
  • 当拥塞窗口超过这个阈值的时候, 不再按照指数方式增长, 而是按照线性方式增长 

  •  当 TCP 开始启动的时候, 慢启动阈值等于窗口最大值;
  • 在每次超时重发的时候, 慢启动阈值会变成原来的一半, 同时拥塞窗口置回1。

 少量的丢包, 我们仅仅是触发超时重传; 大量的丢包, 我们就认为网络拥塞; 当 TCP 通信开始后, 网络吞吐量会逐渐上升; 随着网络发生拥堵, 吞吐量会立刻下降; 拥塞控制, 归根结底是 TCP 协议想尽可能快的把数据传输给对方, 但是又要避免给网络造成太大压力的折中方案.

延迟应答 

 如果接收数据的主机立刻返回 ACK 应答, 这时候返回的窗口可能比较小.

  • 假设接收端缓冲区为 1M. 一次收到了 500K 的数据; 如果立刻应答, 返回的窗口就是 500K;
  • 但实际上可能处理端处理的速度很快, 10ms 之内就把 500K 数据从缓冲区消费掉了;
  • 在这种情况下, 接收端处理还远没有达到自己的极限, 即使窗口再放大一些, 也能处理过来;
  • 如果接收端稍微等一会再应答, 比如等待 200ms 再应答, 那么这个时候返回的窗口大小就是 1M; 

一定要记得, 窗口越大, 网络吞吐量就越大, 传输效率就越高. 我们的目标是在保证网络不拥塞的情况下尽量提高传输效率; 

那么所有的包都可以延迟应答么? 肯定也不是;

  • 数量限制: 每隔 N 个包就应答一次;
  • 时间限制: 超过最大延迟时间就应答一次; 

具体的数量和超时时间, 依操作系统不同也有差异; 一般 N 取 2, 超时时间取200ms; 

捎带应答

在延迟应答的基础上, 我们发现, 很多情况下, 客户端服务器在应用层也是"一发一收" 的. 意味着客户端给服务器说了 "How are you", 服务器也会给客户端回一个"Fine, thank you";

那么这个时候 ACK 就可以搭顺风车, 和服务器回应的 "Fine, thank you" 一起回给客户端 

面向字节流

创建一个 TCP 的 socket, 同时在内核中创建一个 发送缓冲区 和一个接收缓冲区; 

  • 调用 write 时, 数据会先写入发送缓冲区中;
  • 如果发送的字节数太长, 会被拆分成多个 TCP 的数据包发出;
  • 如果发送的字节数太短, 就会先在缓冲区里等待, 等到缓冲区长度差不多了, 或者其他合适的时机发送出去;
  • 接收数据的时候, 数据也是从网卡驱动程序到达内核的接收缓冲区;
  • 然后应用程序可以调用 read 从接收缓冲区拿数据;
  • 另一方面, TCP 的一个连接, 既有发送缓冲区, 也有接收缓冲区, 那么对于这一个连接, 既可以读数据, 也可以写数据. 这个概念叫做 全双工 

由于缓冲区的存在, TCP 程序的读和写不需要一一匹配, 例如: 

  • 写 100 个字节数据时, 可以调用一次 write 写 100 个字节, 也可以调用100 次write, 每次写一个字节;
  • 读 100 个字节数据时, 也完全不需要考虑写的时候是怎么写的, 既可以一次read 100 个字节, 也可以一次 read 一个字节, 重复 100 次; 

粘包问题 

  • 首先要明确, 粘包问题中的 "包" , 是指的应用层的数据包.
  • 在 TCP 的协议头中, 没有如同 UDP 一样的 "报文长度" 这样的字段, 但是有一个序号这样的字段.
  • 站在传输层的角度, TCP 是一个一个报文过来的. 按照序号排好序放在缓冲区中.
  • 站在应用层的角度, 看到的只是一串连续的字节数据.
  • 那么应用程序看到了这么一连串的字节数据, 就不知道从哪个部分开始到哪个部分, 是一个完整的应用层数据包. 

那么如何避免粘包问题呢? 归根结底就是一句话, 明确两个包之间的边界 

  • 对于定长的包, 保证每次都按固定大小读取即可; 
  • 对于变长的包, 可以在包头的位置, 约定一个包总长度的字段, 从而就知道了包的结束位置;
  • 对于变长的包, 还可以在包和包之间使用明确的分隔符(应用层协议, 是程序猿自己来定的, 只要保证分隔符不和正文冲突即可) 

对于 UDP 协议来说, 是否也存在 "粘包问题" 呢? 

  • 对于 UDP, 如果还没有上层交付数据, UDP 的报文长度仍然在. 同时, UDP是一个一个把数据交付给应用层. 就有很明确的数据边界.
  • 站在应用层的角度, 使用 UDP 的时候, 要么收到完整的UDP报文, 要么不收. 不会出现"半个"的情况 

 TCP 异常情况

进程终止: 进程终止会释放文件描述符, 仍然可以发送 FIN. 和正常关闭没有什么区别.

机器重启: 和进程终止的情况相同. 机器掉电/网线断开: 接收端认为连接还在, 一旦接收端有写入操作, 接收端发现连接已经不在了, 就会进行 reset. 即使没有写入操作, TCP 自己也内置了一个保活定时器, 会定期询问对方是否还在. 如果对方不在, 也会把连接释放.

另外, 应用层的某些协议, 也有一些这样的检测机制. 例如 HTTP 长连接中, 也会定期检测对方的状态. 例如 QQ, 在 QQ 断线之后, 也会定期尝试重新连接

TCP/UDP 对比 

我们说了 TCP 是可靠连接, 那么是不是 TCP 一定就优于 UDP 呢? TCP 和UDP之间的优点和缺点, 不能简单, 绝对的进行比较 

  • TCP 用于可靠传输的情况, 应用于文件传输, 重要状态更新等场景;
  • UDP 用于对高速传输和实时性要求较高的通信领域, 例如, 早期的QQ, 视频传输等. 另外 UDP 可以用于广播; 

相关文章:

【Linux网络】传输层TCP协议

🌈个人主页:秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343 🔥 系列专栏:https://blog.csdn.net/qinjh_/category_12891150.html 目录 TCP 协议 TCP 协议段格式 确认应答(ACK)机制 超时重传机制 连接管理机制 …...

不同视角理解三维旋转

在二维空间中,绕任意点旋转可以分解为: 1)平移旋转点到原点,2)绕原点旋转,3)逆平移旋转点; 可用矩阵表示为 , 其中, 表示绕原点旋转 , 为平移矩…...

Adobe Acrobat——设置PDF打印页面的大小

1. 打开 PDF 文件; 2. 点击菜单栏的 “文件” → “打印”; 3. 在打印对话框中,点击 “属性”; 4. 点击 “布局”→ “高级”; 5. 点击 “纸张规格”,选择 “PostScript 自定义页面大小”,然后…...

Android apk装机编译类型: verify、speed-profile, speed与启动耗时

Android apk装机编译类型: verify、speed-profile, speed与启动耗时 Dex2oat (dalvik excutable file to optimized art file) ,对 dex 文件进行编译优化,Android 虚拟机可识别的是dex文件,应用运行过程如果每次都将dex文件加载内存&#xff…...

纹理压缩格式优化

🎯 Unity 项目纹理压缩格式优化终极指南 ——不同平台、不同手机型号,如何正确选择 🧩 什么是纹理压缩(Texture Compression)? Texture压缩 = 减小显存占用,提升加载速度,减轻GPU负担纹理是游戏中最大资源,占用50%+内存正确压缩:减少GPU Bandwidth,提高渲染性能错…...

使用Virtual Serial Port Driver+com2tcp(tcp2com)进行两台电脑的串口通讯

使用Virtual Serial Port Drivercom2tcp或tcp2com进行两台电脑的串口通讯 问题说明解决方案方案三具体操作流程网上教程软件安装拓扑图准备工作com2tcp和tcp2com操作使用串口助手进行验证 方案三存在的问题数据错误通讯延时 问题说明 最近想进行串口通讯的一个测试&#xff0c…...

【从0-1的HTML】第3篇:html引入css的3种方式

文章目录 HTML中引入CSS的方式行内样式内部样式外部样式yinru.css文件 完整html文件 引入CSS方式的优先级 HTML中引入CSS的方式 HTML:是使用标签来描述网页元素 CSS:是Cascading Style Sheets,层叠样式表,用来控制样式来显示网页…...

数智破局·生态共生:重构全球制造新引擎 2025 WOD制造业数字化博览会即将在沪盛大启幕

共探数智化未来,共创新质生产力。2025年6月17日—19日,上海浦东新国际博览中心将迎来全球制造业数字化转型的盛会——WOD制造业数字化博览会。作为全球首个聚焦制造业数字化全场景的专业展会,本届展会以“数智破局生态共生:重构全…...

machine_env_loader must have been assigned before creating ssh child instance

在主机上执行roslaunch命令时,报错:machine_env_loader must have been assigned before creating ssh child instance。 解决办法: 打开hostos文件,检查local host 前的内部ip是否正常。操作示例: 先输入下方指令打…...

BGP/MPLS IP VPN跨域解决方案

目录 MPLS VPN跨域方案出现背景: MPLS VPN回顾 VRF(Virtual Route Forward)虚拟路由转发 MPLS(Multiple Protcol Label Swtich)多协议标签交换 MP-BGP多协议BGP MPLS VPN跨域OptionA 控制平面: 转发平面: 总结: 挑战: MPLS VPN跨域OptionB 非RR场景: 控制平面: 转发…...

C语言-10.字符串

10.1字符串 10.1-1字符串 字符数组 char word[] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘!’}; word[0]Hword[1]eword[2]lword[3]lword[4]oword[5]!这不是C语言的字符串,因为不能用字符串的方式做计算 字符串 char word[] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘!’}; word[0]Hwo…...

backend 服务尝试连接 qdrant 容器,但失败了,返回 502 Bad Gateway 问题排查

遇到的问题是: backend 报错:502 Bad Gateway 来自 Qdrant → 导致接口 /api/chat 返回 500 Internal Server Error并且日志中提示: QDRANT_URL http://qdrant:6333✅ 问题分析 这个错误的根本原因是: 你的 backend 服务尝试连…...

硬件学习笔记--66 MCU的DMA简介

DMA(Direct Memory Access,直接存储器访问)是MCU中一种重要的数据传输机制,它允许外设与存储器之间或存储器与存储器之间直接传输数据,而无需CPU的持续干预。 1、DMA的基本原理 1.1 核心概念: 1&#xf…...

18. Qt系统相关:多线程

一、概述 在Qt中,使用QThread类对系统线程进行了封装。QThread代表一个在应用程序中可独立控制的线程,也可以和进程中的其他线程共享数据。 二、QThread常用API 三、QThread使用 自定义一个类,继承自QThread,并且只有一个线程处…...

6个月Python学习计划 Day 14 - 异常处理基础( 补充学习)

第二周 Day 8 - Python 函数基础 Day 9 - 函数进阶用法 Day 10 - 模块与标准库入门 Day 11 - 列表推导式、内置函数进阶、模块封装实战 Day 12 - 字符串处理 & 文件路径操作 Day 13 - 文件操作基础 🎯 今日目标 理解异常的概念和常见异常类型掌握 try-except …...

使用jstack排查CPU飙升的问题记录

最近,看到短视频传播了一个使用jstack来协助排查CPU飙升的案例。我也是比较感兴趣,参考了视频博主的流程,自己做了下对应案例的实战演练,在此,想做一下,针对相关问题模拟与排查演练的实战过程记录。 案例中…...

cursor如何开启自动运行模式

在Cursor中,开启自动运行模式即启用“Yolo Mode”,具体操作如下: 按下Ctrl Shift J(Windows/Linux)或Cmd Shift J(Mac)打开Cursor设置。导航到“Features”(功能)选…...

SecureCRT 设置超时自动断开连接时长

我们在使用SecureCRT 连接服务器时,经常性出现2分钟未操作已连接的服务器,就会自动断开连接,此时需要重新连接,非常影响服务器操作,本文可以很好带领大家解决这种问题。...

《复制粘贴的奇迹:原型模式》

📖 背景故事 创业初期,小明每天加班写配送路线、配送策略、营销套餐。可当业务做大后,他发现大家常常下单“上次那个套餐”—— “老板,再来一个上次的奶茶水果!” “老样子,照搬昨天晚上的宵夜套餐&#…...

IEC 61347-1:2015 灯控制装置安全标准详解

IEC 61347-1:2015灯控制装置安全标准详解 IEC 61347-1:2015 是国际电工委员会(IEC)发布的灯控制装置第1部分:通用要求和安全要求的核心标准,为各类照明用电子控制设备设定了全球通用的安全基准。该标准适用于独立式或内置于灯具/…...

Ansys Zemax | 手机镜头设计 - 第 4 部分:用 LS-DYNA 进行冲击性能分析

附件下载 联系工作人员获取附件 该系列文章将讨论智能手机镜头模组设计的挑战,从概念和设计到制造和结构变形分析。本文是四部分系列中的第四部分,它涵盖了相机镜头的显式动态模拟,以及对光学性能的影响。使用 Ansys Mechanical 和 LS - DY…...

[蓝桥杯]实现选择排序

实现选择排序 题目描述 实现选择排序算法。介绍如下: 选择排序的工作原理是每一次从需要排序的数据元素中选出最小的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排列完毕。 请编写代码,完成选择排序,…...

[蓝桥杯]卡片换位

卡片换位 题目描述 你玩过华容道的游戏吗? 这是个类似的,但更简单的游戏。 看下面 3 x 2 的格子 --------- | A | * | * | --------- | B | | * | --------- 在其中放 5 张牌,其中 A 代表关羽,B 代表张飞,* …...

【论文笔记】High-Resolution Representations for Labeling Pixels and Regions

【题目】:High-Resolution Representations for Labeling Pixels and Regions 【引用格式】:Sun K, Zhao Y, Jiang B, et al. High-resolution representations for labeling pixels and regions[J]. arXiv preprint arXiv:1904.04514, 2019. 【网址】…...

【题解-洛谷】P9422 [蓝桥杯 2023 国 B] 合并数列

题目:P9422 [蓝桥杯 2023 国 B] 合并数列 题目描述 小明发现有很多方案可以把一个很大的正整数拆成若干正整数的和。他采取了其中两种方案,分别将他们列为两个数组 { a 1 , a 2 , ⋯ a n } \{a_1, a_2, \cdots a_n\} {a1​,a2​,⋯an​} 和 { b 1 , …...

在MATLAB中,`mean(P_train, 2)` 的含义

在MATLAB中,mean(P_train, 2) 的含义是: 计算矩阵 P_train 中每一行的平均值(沿第2个维度操作)。 详解: mean(A, dim) 函数: 对数组 A 沿维度 dim 求平均值。dim1 → 按列计算(返回行向量&…...

开源模型应用落地-OpenAI Agents SDK-集成Qwen3-8B(一)

一、前言 在人工智能技术迅猛发展的今天,OpenAI Agents SDK 为开发者提供了一个强大的工具集,用于构建基于 Python 的智能代理应用。这些代理可以执行从简单任务到复杂决策的一系列操作,极大地提升了应用程序的智能化水平。 通过 OpenAI Agents SDK,可以利用 Python 编程语…...

109页PPT华为流程模块L1-L4级梳理及研发采购服务资产5级建模

华为的流程体系是其核心竞争力之一,也是其从一家小型民营企业成长为全球领先科技巨头的重要支撑。这套体系的核心思想是以客户为中心、以价值创造为导向、以流程驱动业务、持续优化改进。 下载资料请查看文章中图片右下角信息 以下是华为流程体系的关键组成部分和特…...

第N1周:one-hot编码案例

🍨 本文为🔗365天深度学习训练营中的学习记录博客 🍖 原作者:K同学啊 一、one-hot编码概念 自然语言处理(NLP)中的文本数字化:文字对于计算机来说就仅仅只是一个个符号,计算…...

Windows安装docker desktop

Windows 版本: Windows 10/11(64位)专业版、企业版或教育版(家庭版需手动配置)。 版本号需 ≥ 1909(建议更新到最新系统) 打开程序 启动服务后点点点 重启生效(没有的话 安装WSL…...