当前位置: 首页 > news >正文

【MATLAB第61期】基于MATLAB的GMM高斯混合模型回归数据预测

【MATLAB第61期】基于MATLAB的GMM高斯混合模型回归数据预测

  1. 高斯混合模型GMM广泛应用于数据挖掘、模式识别、机器学习和统计分析。其中,它们的参数通常由最大似然和EM算法确定。
  2. 关键思想是使用高斯混合模型对数据(包括输入和输出)的联合概率密度函数进行建模。
  3. 文献参考:https://doi.org/10.1016/j.specom.2012.06.005。
  4. 使用工具箱netlab。

一、效果展示

在这里插入图片描述

二、代码展示

1.数据(7输入1输出)

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

2.GMM参数设置

% GMM参数设置
iter = 25;   % 迭代次数
Cov_type = 'full';  %协方差矩阵的类型
N_inputs = min(size(p_train'));%输入维度        
N_outputs = min(size(t_train'));%输出维度 
N_mixtures = 3;%高斯混合模型混合数

3.GMM仿真预测及评价指标计算

%%  仿真预测
t_sim1 = GMM( p_train', N_inputs, N_outputs, N_mixtures, Cov_type);
t_sim2 = GMM( p_test', N_inputs, N_outputs, N_mixtures, Cov_type);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output)';
T_sim2 = mapminmax('reverse', t_sim2, ps_output)';%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  绘图
figure()
subplot(2,1,1)
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'GMM训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
gridsubplot(2,1,2)
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'GMM测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2)^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%  MAPE   mape = mean(abs((YReal - YPred)./YReal));mape1 = mean(abs((T_train - T_sim1)./T_train));    
mape2 = mean(abs((T_test - T_sim2 )./T_test));      disp(['训练集数据的MAPE为:', num2str(mape1)])
disp(['测试集数据的MAPE为:', num2str(mape2)])

三、代码获取

后台私信回复“61期”即可获取下载链接。

相关文章:

【MATLAB第61期】基于MATLAB的GMM高斯混合模型回归数据预测

【MATLAB第61期】基于MATLAB的GMM高斯混合模型回归数据预测 高斯混合模型GMM广泛应用于数据挖掘、模式识别、机器学习和统计分析。其中,它们的参数通常由最大似然和EM算法确定。关键思想是使用高斯混合模型对数据(包括输入和输出)的联合概率…...

Mnist分类与气温预测任务

目录 传统机器学习与深度学习的特征工程特征向量pytorch实现minist代码解析归一化损失函数计算图Mnist分类获取Mnist数据集,预处理,输出一张图像面向工具包编程使用TensorDataset和DataLoader来简化数据预处理计算验证集准确率 气温预测回归构建神经网络…...

Pytorch深度学习-----神经网络的卷积操作

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...

微信小程序转抖音小程序的坑:The component <xxx> used in pages/xxx/xxx is undefined

微信小程序组件定义在根目录的 app.json 中了,在抖音小程序中出现找不到的情况。 在需要用到组件的 pages 目录中页面文件夹的 json "usingComponents": {} 大括号中添加页面使用的组件,即可使用......

Vue+element Ui的el-select同时获取value和label的方法总结

1.通过ref的形式&#xff08;推荐) <template><div class"root"><el-selectref"optionRef"change"handleChange"v-model"value"placeholder"请选择"style"width: 250px"><el-optionv-for&q…...

乐划锁屏充分发挥强创新能力,打造内容业新生态

乐划锁屏作为新型内容媒体,在这一市场有着众多独特的优势,不仅能够通过多场景的联动给内容创作者带来了更多可能性,还促进了更多优质作品的诞生,为用户带来更加丰富多彩的锁屏使用体验。 作为OPPO系统原生的OS应用,乐划锁屏一直致力于打造为用户提供至美内容的内容平台,吸引了全…...

防御第三天

1.总结当堂NAT与双机热备原理&#xff0c;形成思维导图 2.完成课堂NAT与双机热备实验 fw1: <USG6000V1>sy [USG6000V1]int g0/0/0 [USG6000V1-GigabitEthernet0/0/0]ip add 192.168.18.2 24 [USG6000V1-GigabitEthernet0/0/0]service-manage all permit (地址无所谓&…...

用JavaScript和HTML实现一个精美的计算器

文章目录 一、前言二、技术栈三、功能实现3.1 引入样式3.2 编写显示页面3.2 美化计算器页面3.3 实现计算器逻辑 四、总结 一、前言 计算器是我们日常生活中经常使用的工具之一&#xff0c;可以帮助我们进行简单的数学运算。在本博文中&#xff0c;我将使用JavaScript编写一个漂…...

基于postgresl的gaussDB(DWS)地址省市区解析函数

地址格式为&#xff1a; 省(自治区&#xff0c;直辖市)、市、区。 直辖市的地址格式为&#xff0c; 北京市北京市海淀区xxxxx。 若是北京市海淀区xxx&#xff0c;自己改改就可以了 采用的是笨办法&#xff0c;穷举。 涉及的两个主要内置函数。 1. instr( <start_positio…...

【Golang】Golang进阶系列教程--Go 语言 new 和 make 关键字的区别

文章目录 前言new源码使用 make源码使用 总结 前言 本篇文章来介绍一道非常常见的面试题&#xff0c;到底有多常见呢&#xff1f;可能很多面试的开场白就是由此开始的。那就是 new 和 make 这两个内置函数的区别。 在 Go 语言中&#xff0c;有两个比较雷同的内置函数&#xf…...

Day 9 C++ 内存分区模型

目录 内存四区 代码区 全局区 栈区 堆区 内存四区意义&#xff1a; 程序运行前后内存变化 程序运行前 代码区 全局区 程序运行后 栈区 堆区 new操作符 基本语法 创建 释放&#xff08;delete&#xff09; 内存四区 代码区 代码区&#xff08;Code Segment&…...

STM32 CubeMX 定时器(普通模式和PWM模式)

STM32 CubeMX STM32 CubeMX 定时器&#xff08;普通模式和PWM模式&#xff09; STM32 CubeMXSTM32 CubeMX 普通模式一、STM32 CubeMX 设置二、代码部分STM32 CubeMX PWM模式一、STM32 CubeMX 设置二、代码部分总结 STM32 CubeMX 普通模式 一、STM32 CubeMX 设置 二、代码部分 …...

mysql清除主从复制关系

mysql清除主从复制关系 mysql主从复制中,需要将主从复制关系清除,需要取消其从库角色。这可通过执行RESET SLAVE ALL清除从库的同步复制信息、包括连接信息和二进制文件名、位置。从库上执行这个命令后,使用show slave status将不会有输出。reset slave是各版本Mysql都有的功…...

Spring Cloud Eureka 服务注册和服务发现超详细(附加--源码实现案例--及实现逻辑图)

文章目录 EurekaEureka组件可以实现哪些功能什么是CAP原则&#xff1f;服务注册代码实战搭建注册中心服务A搭建服务B搭建启动服务启动注册中心启动服务A启动服务B 结束语 Eureka 这篇文章先讲述一下Eureka的应用场景、代码实现案例&#xff0c;多个服务模块注册到Euraka中&…...

【docker】docker部署nginx

目录 一、步骤二、示例 一、步骤 1.搜索nginx镜像 2.拉取nginx镜像 3.创建容器 4.测试nginx 二、示例 1.搜索nginx镜像 docker search nginx2.拉取nginx镜像 docker pull nginx3.创建容器&#xff0c;设置端口映射、目录映射 # 在root目录下创建nginx目录用于存储nginx数据…...

苍穹外卖-day08

苍穹外卖-day08 本项目学自黑马程序员的《苍穹外卖》项目&#xff0c;是瑞吉外卖的Plus版本 功能更多&#xff0c;更加丰富。 结合资料&#xff0c;和自己对学习过程中的一些看法和问题解决情况上传课件笔记 视频&#xff1a;https://www.bilibili.com/video/BV1TP411v7v6/?sp…...

【matlab】机器人工具箱快速上手-动力学仿真(代码直接复制可用)

动力学代码&#xff0c;按需修改参数 各关节力矩-关节变量的关系曲线&#xff1a; %%%%%%%%SCARA机器人仿真模型 l[0.457 0.325]; L(1) Link(d,0,a,l(1),alpha,0,standard,qlim,[-130 130]*pi/180);%连杆1 L(2)Link(d,0,a,l(2),alpha,pi,standard,qlim,[-145 145]*pi/180);%连…...

MySQL高级篇第2章(MySQL的数据目录)

文章目录 1、MySQL8的主要目录结构1.1 数据库文件的存放路径1.2 相关命令目录1.3 配置文件目录 2、数据库和文件系统的关系2.1 查看默认数据库2.2 数据库在文件系统中的表示2.3 表在文件系统中的表示2.3.1 InnoDB存储引擎模式2.3.2 MyISAM存储引擎模式 2.4 小结 1、MySQL8的主要…...

【通过改变压缩视频的分辨率实现高效的视频语义分割】CVPR2022论文精度

Efficient Semantic Segmentation by Altering Resolutions for Compressed Videos Efficient Semantic Segmentation by Altering Resolutions for Compressed VideosBasic Information:论文简要 :背景信息:a. 理论背景:b. 技术路线: 结果:a. 详细的实验设置:b. 详细的实验结果…...

golang 时间工具类

用不习惯也嫌麻烦每次都去操作时间&#xff0c;然后就自己写了个时间工具类 package timeutilimport ("time" )func New() *TimeUtil {return &TimeUtil{} }// TimeUtil 是时间操作工具类 type TimeUtil struct{}// GetFormattedDate 获取格式化的日期字符串 fun…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...