当前位置: 首页 > news >正文

【141. 环形链表】

来源:力扣(LeetCode)

描述:

给你一个链表的头节点 head ,判断链表中是否有环。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意: pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。

如果链表中存在环 ,则返回 true 。 否则,返回 false

示例 1:

3

输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

2

输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

3

输入:head = [1], pos = -1
输出:false
解释:链表中没有环。

提示:

  • 链表中节点的数目范围是 [0, 104]
  • -105 <= Node.val <= 105
  • pos 为 -1 或者链表中的一个 有效索引 。

方法一:哈希表

思路及算法

最容易想到的方法是遍历所有节点,每次遍历到一个节点时,判断该节点此前是否被访问过。

具体地,我们可以使用哈希表来存储所有已经访问过的节点。每次我们到达一个节点,如果该节点已经存在于哈希表中,则说明该链表是环形链表,否则就将该节点加入哈希表中。重复这一过程,直到我们遍历完整个链表即可。

代码:

class Solution {
public:bool hasCycle(ListNode *head) {unordered_set<ListNode*> seen;while (head != nullptr) {if (seen.count(head)) {return true;}seen.insert(head);head = head->next;}return false;}
};

执行用时:20 ms, 在所有 C++ 提交中击败了12.32%的用户
内存消耗:10.3 MB, 在所有 C++ 提交中击败了13.19%的用户
复杂度分析
时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。
空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。

方法二:快慢指针

思路及算法

本方法需要读者对「Floyd 判圈算法」(又称龟兔赛跑算法)有所了解。

假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。

我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一慢。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。

2.1
2.2
2.3
2.4

2.5
细节

为什么我们要规定初始时慢指针在位置 head,快指针在位置 head.next,而不是两个指针都在位置 head(即与「乌龟」和「兔子」中的叙述相同)?

观察下面的代码,我们使用的是 while 循环,循环条件先于循环体。由于循环条件一定是判断快慢指针是否重合,如果我们将两个指针初始都置于 head,那么 while 循环就不会执行。因此,我们可以假想一个在 head 之前的虚拟节点,慢指针从虚拟节点移动一步到达 head,快指针从虚拟节点移动两步到达 head.next,这样我们就可以使用 while 循环了。

当然,我们也可以使用 do-while 循环。此时,我们就可以把快慢指针的初始值都置为 head。

代码:

class Solution {
public:bool hasCycle(ListNode* head) {if (head == nullptr || head->next == nullptr) {return false;}ListNode* slow = head;ListNode* fast = head->next;while (slow != fast) {if (fast == nullptr || fast->next == nullptr) {return false;}slow = slow->next;fast = fast->next->next;}return true;}
};

执行用时:8 ms, 在所有 C++ 提交中击败了92.34%的用户
内存消耗:8 MB, 在所有 C++ 提交中击败了34.69%的用户
复杂度分析

  • 时间复杂度:O(N),其中 N 是链表中的节点数。
    - 当链表中不存在环时,快指针将先于慢指针到达链表尾部,链表中每个节点至多被访问两次。
    - 当链表中存在环时,每一轮移动后,快慢指针的距离将减小一。而初始距离为环的长度,因此至多移动 N 轮。
  • 空间复杂度:O(1)。我们只使用了两个指针的额外空间。
    author:LeetCode-Solution

相关文章:

【141. 环形链表】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#x…...

ORB特征笔记

简介 ORB Oriented FAST Rotated BRIEF 前面的Oriented FAST说明的是它的关键点的选取是一种改良过的FAST&#xff0c;在FAST的基础上加了方向信息&#xff1b;后面的Rotated BRIEF是指特征描述符使用BRIEF描述子&#xff08;Binary Robust Independent Elementary Featur…...

12.Netty源码之整体架构脉络

Netty 整体架构脉络 Netty 的逻辑处理架构为典型网络分层架构设计&#xff0c;共分为网络通信层、事件调度层、服务编排层&#xff0c;每一层各司其职。 网络通信层 网络通信层的职责是执行网络 I/O 的操作。它支持多种网络协议和 I/O 模型的连接操作。当网络数据读取到内核缓冲…...

【ArcGIS Pro二次开发】(54):三调名称转用地用海名称

三调地类和用地用海地类之间有点相似但并不一致。 在做规划时&#xff0c;拿到的三调&#xff0c;都需要将三调地类转换为用地用海地类&#xff0c;然后才能做后续的工作。 一般情况下&#xff0c;三调转用地用海存在【一对一&#xff0c;多对一和一对多】3种情况。 前2种情况…...

3D Tiles官方示例资源下载链接

本文列出Cesium官方提供的 3D Tiles 1.0和1.1规范的9个示例切块集&#xff08;tileset&#xff09;。 有关如何使用本地服务器托管这些示例的详细信息&#xff0c;请参阅 INSTRUCTIONS.md。 推荐&#xff1a;用 NSDT设计器 快速搭建可编程3D场景。 1、Metadata Granularities …...

【Java】分支结构习题

【Java】分支结构 文章目录 【Java】分支结构题1 &#xff1a;数字9 出现的次数题2 &#xff1a;计算1/1-1/21/3-1/41/5 …… 1/99 - 1/100 的值。题3 &#xff1a;猜数字题4 &#xff1a;牛客BC110 X图案题5 &#xff1a;输出一个整数的每一位题6 &#xff1a; 模拟三次密码输…...

删除主表 子表外键没有索引的性能优化

整个表147M&#xff0c;执行时一个CPU耗尽&#xff0c; buffer gets 超过1个G&#xff0c; 启用并行也没有用 今天开发的同事问有个表上的数据为什么删不掉&#xff1f;我看了一下&#xff0c;也就不到100000条数据&#xff0c;表上有外键&#xff0c;等了5分钟hang在那里&…...

面向切面编程AOP

面向切面编程简介 IoC使软件组件松耦合。AOP让你能够捕捉系统中经常使用的功能&#xff0c;把它转化成组件。 AOP&#xff08;Aspect Oriented Programming&#xff09;&#xff1a;面向切面编程&#xff0c;面向方面编程。&#xff08;AOP是一种编程技术&#xff09; AOP是对…...

大学生活题解

样例输入&#xff1a; 3 .xA ... Bx.样例输出&#xff1a; 6思路分析&#xff1a; 这道题只需要在正常的广搜模板上多维护一个— —方向&#xff0c;如果当前改变方向&#xff0c;就坐标不变&#xff0c;方向变&#xff0c;步数加一&#xff1b;否则坐标变&#xff0c;方向不…...

flask的配置项

flask的配置项 为了使 Flask 应用程序正常运行&#xff0c;有多种配置选项需要考虑。下面是一些基本的 Flask 配置选项&#xff1a; DEBUG: 这个配置项决定 Flask 是否应该在调试模式下运行。如果这个值被设为 True&#xff0c;Flask 将会提供更详细的错误信息&#xff0c;并…...

暑假刷题第16天--7/28

143. 最大异或对 - AcWing题库&#xff08;字典树&#xff09; #include<iostream> using namespace std; const int N100005; int a[N]; int nex[10000007][2],cnt; void insert(int x){int p0;for(int i30;i>0;i--){int ux>>i&1;if(!nex[p][u])nex[p][u]…...

vue vite ts electron ipc arm64

初始化 npm init vue # 全选 yes npm i # 进入项目目录后使用 npm install electron electron-builder -D npm install commander -D # 额外组件增加文件 新建 plugins 文件夹 src/background.ts 属于主进程 ipcMain.on、ipcMain.handle 都用于主进程监听 ipc&#xff0c;…...

数据分析-关于指标和指标体系

一、电商指标体系 二、指标体系的作用 三、统计学中基本的分析手段...

Vue+ElementUI操作确认框及提示框的使用

在进行数据增删改查操作中为保证用户的使用体验&#xff0c;通常需要显示相关操作的确认信息以及操作结果的通知信息。文章以数据的下载和删除提示为例进行了简要实现&#xff0c;点击下载以及删除按钮&#xff0c;会出现对相关信息的提示&#xff0c;操作结果如下所示。 点击…...

宋浩线性代数笔记(二)矩阵及其性质

更新线性代数第二章——矩阵&#xff0c;本章为线代学科最核心的一章&#xff0c;知识点多而杂碎&#xff0c;务必仔细学习。 重难点在于&#xff1a; 1.矩阵的乘法运算 2.逆矩阵、伴随矩阵的求解 3.矩阵的初等变换 4.矩阵的秩 &#xff08;去年写的字&#xff0c;属实有点ugl…...

Linux之Shell 编程详解(二)

第 9 章 正则表达式入门 正则表达式使用单个字符串来描述、匹配一系列符合某个语法规则的字符串。在很多文 本编辑器里&#xff0c;正则表达式通常被用来检索、替换那些符合某个模式的文本。在 Linux 中&#xff0c;grep&#xff0c; sed&#xff0c;awk 等文本处理工具都支持…...

TCP网络通信编程之字节流

目录 【TCP字节流编程】 // 网络编程中&#xff0c;一定是server端先运行 【案例1】 【思路分析】 【客户端代码】 【服务端代码】 【结果展示】 【案例2】 【题目描述】 【注意事项】 【服务端代码】 【客户端代码】 【代码结果】 【TCP字节流编程】 // 网络编程中&a…...

【暑期每日一练】 day8

目录 选择题 &#xff08;1&#xff09; 解析&#xff1a; &#xff08;2&#xff09; 解析&#xff1a; &#xff08;3&#xff09; 解析&#xff1a; &#xff08;4&#xff09; 解析&#xff1a; &#xff08;5&#xff09; 解析&#xff1a; 编程题 题一 描述…...

maven的基本学习

maven https://www.bilibili.com/video/BV14j411S76G?p1&vd_source5c648979fd92a0f7ba8de0cde4f02a6e 1.简介 1.1介绍 Maven翻译为"专家"、“内行”&#xff0c;是Apache下的一个纯Java开发的开源项目。基于项目对象模型(缩写:POM)概念&#xff0c;Maven利用一…...

疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)

疲劳驾驶检测和识别2&#xff1a;Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码) 目录 疲劳驾驶检测和识别2&#xff1a;Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码) 1.疲劳驾驶检测和识别方法 2.疲劳驾驶数据集 &#xff08;1&#xff09;疲…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...