建设银行秋招指南,备考技巧和考试内容详解
建设银行秋招简介
银行作为非常吃香的岗位,每年都有不少同学通过投递简历,进入笔试,再到面试成功,成功到银行就职,也有相当一部分同学因为信息差,符合条件却没有报名。无法进入银行工作。
建设银行的秋招时间一般为9月初,一直持续到10月中旬。建设银行的整个招聘程序包含6个部分,分别为报名,初选,笔试,面试,体检,录用。不同的环节要求不同,应聘者也需要准备不同的东西。
校招秋招在线测评必练
https://www.xmcs.cn/z/qiuzhao
建行秋招考试内容
1、报名
建设银行招聘报名公告一般在官网内,应聘者可根据官网指引填写相关信息,简历生成后,便于应聘者通过第一层报名,当然也有一些人不喜欢在官网上查找信息,而移动端渠道也能帮助应聘者报名。
在报名和选岗位的时候,应聘者一定要注重自身经历填写,因为自身经历符合相关岗位是一个加分项,有利于自己通过初次报名。
2、笔试
建设银行的笔试部分分为4个部分,这4个部分分别是通用职业能力测试,英语能力测试,综合知识测试,性格测试。
认知能力测验(训练题库)
https://www.xmcs.cn/x/rznl
通用能力测试包含资料分析,数字运算,逻辑推理等多个维度,不同的维度侧重点不同,能考察出应聘者能力的方面也不同,当发现自己某方面存在不足时,可以进行试题的反复练习。
英语题型简单,难度略比四级高,略比六级低,对于相关应聘者而言,如果毕业时有意进入银行工作,就必须在大学时固牢英语知识。
综合知识部分涉及的科目特别多,内容也特别杂,谁都不知道他出的问题的知识点属于哪个板块,这需要考生广泛学习,小猫测试网建议可以从历年真题中寻找灵感,增强信心。
MBTI职业性格测试
https://www.zxgj.cn/g/mbti93
卡特尔16pf人格测试
https://www.zxgj.cn/g/16pf
性格测试是考试的最后一个范围,也是很多人觉得自己可以轻松通过的题型,也有相当一部分人认为性格测试的成绩不计入总成绩,所以从来不去认真准备,但偏偏有一部分人因为性格测试的答案不符合应聘方需求,而失去这份工作。如何把握性格测试?可从职业性格测试网站寻找灵感,让自己更加认识自己。
关于心理健康的检测和筛查,还可以参考:SCL-90量表,对于精神疾病方面的检测筛查,可以参考mmpi 明尼苏达多项人格测验,关于人格障碍的检测筛查可以参考 PDQ-4+量表。
心理疾病 - 精神疾病 - 在线检测和筛查
https://www.xmcs.cn/z/xinli
3、面试
面试是内容最难,也是一个让人最摸不着头脑的东西,面试时一定要保持信心,注意语速,注重展示自身亮点。
建行秋招备考提示
1、注意时间
秋招意味着在秋天开始,但不意味着你可以在报名开始之前潦草准备,一定要提前进行规划,着重表现自身亮点。
2、认真准备每一个环节
很多人参与秋招只是抱着试一试的心理,对结果并不重视,如果只是抱着侥幸心理参与秋招,并不用浪费时间,因此在秋招之前一定要认真准备每一个环节。
3、切忌盲目自大
眼高手低的人比比皆是,无论是参与秋招还是任何一种考试,都应该认清自身的定位,目标清晰的做一切事情,不是盲目自大,忽略实际。
相关文章:
建设银行秋招指南,备考技巧和考试内容详解
建设银行秋招简介 银行作为非常吃香的岗位,每年都有不少同学通过投递简历,进入笔试,再到面试成功,成功到银行就职,也有相当一部分同学因为信息差,符合条件却没有报名。无法进入银行工作。 建设银行的秋招…...
Cilium 系列-7-Cilium 的 NodePort 实现从 SNAT 改为 DSR
系列文章 Cilium 系列文章 前言 将 Kubernetes 的 CNI 从其他组件切换为 Cilium, 已经可以有效地提升网络的性能。但是通过对 Cilium 不同模式的切换/功能的启用,可以进一步提升 Cilium 的网络性能。具体调优项包括不限于: 启用本地路由 (Native Rou…...
React的hooks---useReducer
useReducer 作为 useState 的代替方案,在某些场景下使用更加适合,例如 state 逻辑较复杂且包含多个子值,或者下一个 state 依赖于之前的 state 等。 使用 useReducer 还能给那些会触发深更新的组件做性能优化,因为父组件可以向自…...
自然语言处理从入门到应用——LangChain:模型(Models)-[文本嵌入模型Ⅱ]
分类目录:《自然语言处理从入门到应用》总目录 本文将介绍如何在LangChain中使用Embedding类。Embedding类是一种与嵌入交互的类。有很多嵌入提供商,如:OpenAI、Cohere、Hugging Face等,这个类旨在为所有这些提供一个标准接口。 …...
Olap BI工具对比
背景 目前公司主要使用数据存储有MySQL、ES、Hive、HBase、TiDB等 MySQL用于存储应用的基本支撑数据,数据量少;ES和Hbase用于存储和查询调用记录,数据量多;Hive和TiDB用于DC上使用,数据量多。主要使用的数据分析平台…...
【iOS】Cocoapods的安装以及使用
文章目录 前言一、Cocoapods的作用二、安装Cocoapods三、使用Cocoapods总结 前言 最近笔者在仿写天气预报App时用到了api调用数据,一般的基本数据类型我们用Xcode中自带的框架就可以转换得到。但是在和风天气api中的图标的格式为svg格式。 似乎iOS13之后Xcode中可…...
OpenCvSharp (C# OpenCV) 二维码畸变矫正--基于透视变换(附源码)
导读 本文主要介绍如何使用OpenCvSharp中的透视变换来实现二维码的畸变矫正。 由于CSDN文章中贴二维码会导致显示失败,大家可以直接点下面链接查看图片: C# OpenCV实现二维码畸变矫正--基于透视变换 (详细步骤 + 代码) 实现步骤 讲解实现步骤之前先看下效果(左边是原图,右边…...
下级平台级联视频汇聚融合平台EasyCVR,层级显示不正确的原因排查
视频汇聚平台安防监控EasyCVR可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等,能对外分发RTSP、RTMP、FLV、HLS、WebRTC等…...
Android程序CPU使用大的异常分析
程序出现CPU使用过高的问题,如果能够重现,就比较好办了,可以top命令查看各线程的cpu使用,定位到线程。 以下是问国内某AI的答案 在Android应用中,如果某个应用消耗了大量的CPU资源,可以采取以下方法进行分…...
[数学建模] 0、关于数学建模的一点看法付费专栏食用说明
文章目录 1、前言2、数学建模学习索引2.1、建模知识点 3、实战建模论文索引3.1、国赛真题索引3.1.1、[数学建模] [2001年国赛模拟] 1. 血管的三维重建3.1.2、[数学建模] [2011年B国赛模拟] 2. 交巡警服务平台的设置与调度3.1.3、[数学建模][2012年A国赛模拟] 3. 葡萄酒的评价 3…...
2.oracle数据库自增主键
不同于mysql,oracle主键自增不能在建表时直接设置,其实也很简单 1.建表 CREATE TABLE test(id NUMBER NOT NULL,key1 VARCHAR2(40) NULL,key2 VARCHAR2(40) NULL);2.设置主键 alter table test add constraint test_pk primary key (id);3.新建序列tes…...
算法通关村第二关——链表加法的问题解析
题目类型 链表反转、栈 题目描述 * 题目: * 给你两个非空链表来表示两个非负整数,数字最高位位于链表的开始位置。 * 它们的每个节点都只存储一个数字。将这两个数相加会返回一个新的链表。 * 你可以假设除了数字0外,这两个数字都不会以0开头…...
mapboxGL中楼层与室内地图的结合展示
概述 质量不够,数量来凑,没错,本文就是来凑数的。前面的几篇文章实现了楼栋与楼层单体化的展示、室内地图的展示,本文结合前面的几篇文章,做一个综合的展示效果。 实现效果 实现 1. 数据处理 要实现上图所示的效果…...
使用Anaconda3创建pytorch虚拟环境
一、Conda配置Pytorch环境 1.conda安装Pytorch环境 打开Anaconda Prompt,输入命令行: conda create -n pytorch python3.6 输入y,再回车。 稍等,便完成了Pytorch的环境安装。我们可以利用以下命令激活pytorch环境。 conda…...
QT 常用数据结构整理
目录 QString篇 QString篇 //初始化bool bOk false;QString str "sd";QString strTemp(str);str QString("%1,%2").arg("11").arg("-gg");qDebug()<<str;str.sprintf("%s %d","ni",1);qDebug()<<…...
Fiddler使用教程|渗透测试工具使用方法Fiddler
提示:如有问题可联系我,24小时在线 文章目录 前言一、Fiddler界面介绍二、菜单栏1.菜单Fiddler工具栏介绍Fiddler命令行工具详解 前言 网络渗透测试工具: Fiddler是目前最常用的http抓包工具之一。 Fiddler是功能非常强大,是web…...
网站密码忘记了怎么办?chrome浏览器,谷歌浏览器。
有时候忘记了网站的密码,又不想“忘记密码”去一番折腾。如果你正好用的是 chrome 浏览器。 那么根本就没必要折腾,直接就能看到网站密码。 操作如下 1.在浏览器右上角点击三个小点: 2.点这三个点: 3.选择“显示密码”&#x…...
23款奔驰GLS450加装原厂香氛负离子系统,清香宜人,久闻不腻
奔驰原厂香氛合理性可通过车内空气调节组件营造芳香四溢的怡人氛围。通过更换手套箱内香氛喷雾发生器所用的香水瓶,可轻松选择其他香氛。香氛的浓度和持续时间可调。淡雅的香氛缓缓喷出,并且在关闭后能够立刻散去。车内气味不会永久改变,香氛…...
流数据湖平台Apache Paimon(一)概述
文章目录 第1章 概述1.1 简介1.2 核心特性1.3 基本概念1.3.1 Snapshot1.3.2 Partition1.3.3 Bucket1.3.4 Consistency Guarantees一致性保证 1.4 文件布局1.4.1 Snapshot Files1.4.2 Manifest Files1.4.3 Data Files1.4.4 LSM Trees 第1章 概述 1.1 简介 Flink 社区希望能够将…...
上传图片到腾讯云对象存储桶cos 【腾讯云对象存储桶】【cos】【el-upload】【vue3】【上传头像】【删除】
1、首先登录腾讯云官网控制台 进入对象存储页面 2、找到跨越访问CIRS设置 配置规则 点击添加规则 填写信息 3、书写代码 这里用VUE3书写 第一种用按钮出发事件形式 <template><div><input type"file" change"handleFileChange" /><…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
