Day 69-70:矩阵分解
代码:
package dl;import java.io.*;
import java.util.Random;/** Matrix factorization for recommender systems.*/public class MatrixFactorization {/*** Used to generate random numbers.*/Random rand = new Random();/*** Number of users.*/int numUsers;/*** Number of items.*/int numItems;/*** Number of ratings.*/int numRatings;/*** Training data.*/Triple[] dataset;/*** A parameter for controlling learning regular.*/double alpha;/*** A parameter for controlling the learning speed.*/double lambda;/*** The low rank of the small matrices.*/int rank;/*** The user matrix U.*/double[][] userSubspace;/*** The item matrix V.*/double[][] itemSubspace;/*** The lower bound of the rating value.*/double ratingLowerBound;/*** The upper bound of the rating value.*/double ratingUpperBound;/*************************** The first constructor.** @param paraFilename* The data filename.* @param paraNumUsers* The number of users.* @param paraNumItems* The number of items.* @param paraNumRatings* The number of ratings.*************************/public MatrixFactorization(String paraFilename, int paraNumUsers, int paraNumItems,int paraNumRatings, double paraRatingLowerBound, double paraRatingUpperBound) {numUsers = paraNumUsers;numItems = paraNumItems;numRatings = paraNumRatings;ratingLowerBound = paraRatingLowerBound;ratingUpperBound = paraRatingUpperBound;try {readData(paraFilename, paraNumUsers, paraNumItems, paraNumRatings);// adjustUsingMeanRating();} catch (Exception ee) {System.out.println("File " + paraFilename + " cannot be read! " + ee);System.exit(0);} // Of try}// Of the first constructor/*************************** Set parameters.** @param paraRank* The given rank.* @throws IOException*************************/public void setParameters(int paraRank, double paraAlpha, double paraLambda) {rank = paraRank;alpha = paraAlpha;lambda = paraLambda;}// Of setParameters/*************************** Read the data from the file.** @param paraFilename* The given file.* @throws IOException*************************/public void readData(String paraFilename, int paraNumUsers, int paraNumItems,int paraNumRatings) throws IOException {File tempFile = new File(paraFilename);if (!tempFile.exists()) {System.out.println("File " + paraFilename + " does not exists.");System.exit(0);} // Of ifBufferedReader tempBufferReader = new BufferedReader(new FileReader(tempFile));// Allocate space.dataset = new Triple[paraNumRatings];String tempString;String[] tempStringArray;for (int i = 0; i < paraNumRatings; i++) {tempString = tempBufferReader.readLine();tempStringArray = tempString.split(",");dataset[i] = new Triple(Integer.parseInt(tempStringArray[0]),Integer.parseInt(tempStringArray[1]), Double.parseDouble(tempStringArray[2]));} // Of for itempBufferReader.close();}// Of readData/*************************** Initialize subspaces. Each value is in [0, 1].*************************/void initializeSubspaces() {userSubspace = new double[numUsers][rank];for (int i = 0; i < numUsers; i++) {for (int j = 0; j < rank; j++) {userSubspace[i][j] = rand.nextDouble();} // Of for j} // Of for iitemSubspace = new double[numItems][rank];for (int i = 0; i < numItems; i++) {for (int j = 0; j < rank; j++) {itemSubspace[i][j] = rand.nextDouble();} // Of for j} // Of for i}// Of initializeSubspaces/*************************** Predict the rating of the user to the item** @param paraUser* The user index.*************************/public double predict(int paraUser, int paraItem) {double resultValue = 0;for (int i = 0; i < rank; i++) {// The row vector of an user and the column vector of an itemresultValue += userSubspace[paraUser][i] * itemSubspace[paraItem][i];} // Of for ireturn resultValue;}// Of predict/*************************** Train.** @param paraRounds* The number of rounds.*************************/public void train(int paraRounds) {initializeSubspaces();for (int i = 0; i < paraRounds; i++) {updateNoRegular();if (i % 50 == 0) {// Show the processSystem.out.println("Round " + i);System.out.println("MAE: " + mae());} // Of if} // Of for i}// Of train/*************************** Update sub-spaces using the training data.*************************/public void updateNoRegular() {for (int i = 0; i < numRatings; i++) {int tempUserId = dataset[i].user;int tempItemId = dataset[i].item;double tempRate = dataset[i].rating;double tempResidual = tempRate - predict(tempUserId, tempItemId); // Residual// Update user subspacedouble tempValue = 0;for (int j = 0; j < rank; j++) {tempValue = 2 * tempResidual * itemSubspace[tempItemId][j];userSubspace[tempUserId][j] += alpha * tempValue;} // Of for j// Update item subspacefor (int j = 0; j < rank; j++) {tempValue = 2 * tempResidual * userSubspace[tempUserId][j];itemSubspace[tempItemId][j] += alpha * tempValue;} // Of for j} // Of for i}// Of updateNoRegular/*************************** Compute the RSME.** @return RSME of the current factorization.*************************/public double rsme() {double resultRsme = 0;int tempTestCount = 0;for (int i = 0; i < numRatings; i++) {int tempUserIndex = dataset[i].user;int tempItemIndex = dataset[i].item;double tempRate = dataset[i].rating;double tempPrediction = predict(tempUserIndex, tempItemIndex);// +// DataInfo.mean_rating;if (tempPrediction < ratingLowerBound) {tempPrediction = ratingLowerBound;} else if (tempPrediction > ratingUpperBound) {tempPrediction = ratingUpperBound;} // Of ifdouble tempError = tempRate - tempPrediction;resultRsme += tempError * tempError;tempTestCount++;} // Of for ireturn Math.sqrt(resultRsme / tempTestCount);}// Of rsme/*************************** Compute the MAE.** @return MAE of the current factorization.*************************/public double mae() {double resultMae = 0;int tempTestCount = 0;for (int i = 0; i < numRatings; i++) {int tempUserIndex = dataset[i].user;int tempItemIndex = dataset[i].item;double tempRate = dataset[i].rating;double tempPrediction = predict(tempUserIndex, tempItemIndex);if (tempPrediction < ratingLowerBound) {tempPrediction = ratingLowerBound;} // Of ifif (tempPrediction > ratingUpperBound) {tempPrediction = ratingUpperBound;} // Of ifdouble tempError = tempRate - tempPrediction;resultMae += Math.abs(tempError);// System.out.println("resultMae: " + resultMae);tempTestCount++;} // Of for ireturn (resultMae / tempTestCount);}// Of mae/*************************** Compute the MAE.** @return MAE of the current factorization.*************************/public static void testTrainingTesting(String paraFilename, int paraNumUsers, int paraNumItems,int paraNumRatings, double paraRatingLowerBound, double paraRatingUpperBound,int paraRounds) {try {// Step 1. read the training and testing dataMatrixFactorization tempMF = new MatrixFactorization(paraFilename, paraNumUsers,paraNumItems, paraNumRatings, paraRatingLowerBound, paraRatingUpperBound);tempMF.setParameters(5, 0.0001, 0.005);// Step 3. update and predictSystem.out.println("Begin Training ! ! !");tempMF.train(paraRounds);double tempMAE = tempMF.mae();double tempRSME = tempMF.rsme();System.out.println("Finally, MAE = " + tempMAE + ", RSME = " + tempRSME);} catch (Exception e) {e.printStackTrace();} // Of try}// Of testTrainingTesting/*************************** @param args*************************/public static void main(String args[]) {testTrainingTesting("C:\\Users\\86183\\IdeaProjects\\deepLearning\\src\\main\\java\\resources\\movielens-943u1682m.txt", 943, 1682, 10000, 1, 5, 2000);}// Of mainpublic class Triple {public int user;public int item;public double rating;/************************ The constructor.**********************/public Triple() {user = -1;item = -1;rating = -1;}// Of the first constructor/************************ The constructor.**********************/public Triple(int paraUser, int paraItem, double paraRating) {user = paraUser;item = paraItem;rating = paraRating;}// Of the first constructor/************************ Show me.**********************/public String toString() {return "" + user + ", " + item + ", " + rating;}// Of toString}// Of class Triple}// Of class MatrixFactorization
结果:
相关文章:

Day 69-70:矩阵分解
代码: package dl;import java.io.*; import java.util.Random;/** Matrix factorization for recommender systems.*/public class MatrixFactorization {/*** Used to generate random numbers.*/Random rand new Random();/*** Number of users.*/int numUsers…...

数据结构:树的存储结构
学习树之前,我们已经了解了二叉树的顺序存储和链式存储,哪么我们如何来存储普通型的树结构的数据?如下图1: 如图1所示,这是一颗普通的树,我们要如何来存储呢?通常,存储这种树结构的数…...

Vue前端渲染blob二进制对象图片的方法
近期做开发,联调接口。接口返回的是一张图片,是对二进制图片处理并渲染,特此记录一下。 本文章是转载文章,原文章:Vue前端处理blob二进制对象图片的方法 接口response是下图 显然,获取到的是一堆乱码&…...

Java的标记接口(Marker Interface)
Java中的标记接口(Marker Interface)是一个空接口,接口内什么也没有定义。它标识了一种能力,标识继承自该接口的接口、实现了此接口的类具有某种能力。 例如,jdk的com.sun.org.apache.xalan.internal.xsltc.trax.Temp…...

Kafka基础架构与核心概念
Kafka简介 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。架构特点是分区、多副本、多生产者、多订阅者,性能特点主要是…...

观察者模式与观察者模式实例EventBus
什么是观察者模式 顾名思义,观察者模式就是在多个对象之间,定义一个一对多的依赖,当一个对象状态改变时,所有依赖这个对象的对象都会自动收到通知。 观察者模式也称为发布订阅模式(Publish-Subscribe Design Pattern)࿰…...

科普 | OSI模型
本文简要地介绍 OSI 模型 1’ 2’ 3。 更新:2023 / 7 / 23 科普 | OSI模型 术语节点链路协议网络拓扑 概念作用结构应用层表示层会话层传输层网络层数据链路层物理层 数据如何流动OSI 和TCP/IP 的对应关系和协议参考链接 术语 节点 节点( Node &#…...
redis相关异常之RedisConnectionExceptionRedisCommandTimeoutException
本文只是分析Letture类型的Redis 池化连接出现的连接超时异常、读超时异常问题。 1.RedisConnectionException 默认是10秒。 通过如下可以配置: public class MyLettuceClientConfigurationBuilderCustomizer implements LettuceClientConfigurationBuilderCusto…...

Merge the squares! 2023牛客暑期多校训练营4-H
登录—专业IT笔试面试备考平台_牛客网 题目大意:有n*n个边长为1的小正方形摆放在边长为n的大正方形中,每次可以选择不超过50个正方形,将其合并为一个更大的正方形,求一种可行的操作使所有小正方形都被合并成一个n*n的大正方形 1…...

STM32 串口学习(二)
要用跳线帽将PA9与RXD相连,PA10与TXD相连。 软件设计 void uart_init(u32 baud) {//UART 初始化设置UART1_Handler.InstanceUSART1; //USART1UART1_Handler.Init.BaudRatebound; //波特率UART1_Handler.Init.WordLengthUART_WORDLENGTH_8B; //字长为 8 位数据格式U…...

点大商城V2_2.5.0 全开源版 商家自营+多商户入驻 百度+支付宝+QQ+头条+小程序端+unipp开源前端安装测试教程
安装测试环境:Nginx 1.20PHP7.2MySQL 5.6 修复了无法上传开放平台问题 安装说明: 1、上传后端目录至网站 2、导入提供的数据库文件 3、修改数据库配置文件根目录下config.php,增加数据库用户名和密码 4、网站后台直接访问网址ÿ…...
“深入理解SpringBoot:从入门到精通“
标题:深入理解Spring Boot:从入门到精通 摘要:本文将介绍Spring Boot的基本概念和核心特性,并通过示例代码演示如何使用Spring Boot构建一个简单的Web应用程序。 1. 简介 Spring Boot是一个开源的Java框架,旨在简化基…...

PCB绘制时踩的坑 - SOT-223封装
SOT-223封装并不是同一的,细分的话可以分为两种常用的封装。尤其是tab脚的属性很容易搞错。如果你想着用tab脚连接有属性的铺铜,来提高散热效率,那么你一定要注意你购买的器件tab脚的属性。 第一种如下图,第1脚为GND,第…...

Go语法入门 + 项目实战
👂 Take me Hand Acoustic - Ccile Corbel - 单曲 - 网易云音乐 第3个小项目有问题,不能在Windows下跑,懒得去搜Linux上怎么跑了,已经落下进度了.... 目录 😳前言 🍉Go两小时 🔑小项目实战 …...

QT控件通过qss设置子控件的对齐方式、大小自适应等
一些复杂控件,是有子控件的,每个子控件,都可以通过qss的双冒号选择器来选中,进行独特的样式定义。很多控件都有子控件,太多了,后面单独写一篇文章来介绍各个控件的子控件。这里就随便来几个例子 例如下拉列…...
基于java在线收银系统设计与实现
摘要 科技的力量总是在关键的地方改变着人们的生活,不仅如此,我们的生活也是离不开这样或者那样的科技改变,有的消费者没有时间去商场购物,那么电商和快递的结合让端口到消费者的距离不再遥远;有的房客因地域或者工作的…...

Linux--进程的新建状态
新建状态: 操作系统创建了进程的内核数据结构(task_struct、mm_struct、页表),但是页表没有创建映射关系,而且磁盘里的程序的代码和数据未加载到物理内存...
区间dp,合并石子模板题
设有 N 堆石子排成一排,其编号为 1,2,3,…,N。 每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。 每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的…...

C++代码格式化工具clang-format详细介绍
文章目录 clang-format思考代码风格指南生成您的配置运行 clang-format禁用一段代码的格式设置clang-format的设置预览 clang-format 我曾在许多编程团队工作过,这些团队名义上都有“编程风格指南”。该指南经常被写下来并放置在开发人员很少查看的地方。几乎在每种…...

CentOS 7安装PostgreSQL 15版本数据库
目录 一、何为PostgreSQL? 二、PostgreSQL安装 2.1安装依赖 2.2 执行安装 2.3 数据库初始化 2.4 配置环境变量 2.5 创建数据库 2.6 配置远程 2.7 测试远程 三、常用命令 四、用户创建和数据库权限 一、何为PostgreSQL? PostgreSQL是以加州大学…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?
Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...

关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...