Day 69-70:矩阵分解
代码:
package dl;import java.io.*;
import java.util.Random;/** Matrix factorization for recommender systems.*/public class MatrixFactorization {/*** Used to generate random numbers.*/Random rand = new Random();/*** Number of users.*/int numUsers;/*** Number of items.*/int numItems;/*** Number of ratings.*/int numRatings;/*** Training data.*/Triple[] dataset;/*** A parameter for controlling learning regular.*/double alpha;/*** A parameter for controlling the learning speed.*/double lambda;/*** The low rank of the small matrices.*/int rank;/*** The user matrix U.*/double[][] userSubspace;/*** The item matrix V.*/double[][] itemSubspace;/*** The lower bound of the rating value.*/double ratingLowerBound;/*** The upper bound of the rating value.*/double ratingUpperBound;/*************************** The first constructor.** @param paraFilename* The data filename.* @param paraNumUsers* The number of users.* @param paraNumItems* The number of items.* @param paraNumRatings* The number of ratings.*************************/public MatrixFactorization(String paraFilename, int paraNumUsers, int paraNumItems,int paraNumRatings, double paraRatingLowerBound, double paraRatingUpperBound) {numUsers = paraNumUsers;numItems = paraNumItems;numRatings = paraNumRatings;ratingLowerBound = paraRatingLowerBound;ratingUpperBound = paraRatingUpperBound;try {readData(paraFilename, paraNumUsers, paraNumItems, paraNumRatings);// adjustUsingMeanRating();} catch (Exception ee) {System.out.println("File " + paraFilename + " cannot be read! " + ee);System.exit(0);} // Of try}// Of the first constructor/*************************** Set parameters.** @param paraRank* The given rank.* @throws IOException*************************/public void setParameters(int paraRank, double paraAlpha, double paraLambda) {rank = paraRank;alpha = paraAlpha;lambda = paraLambda;}// Of setParameters/*************************** Read the data from the file.** @param paraFilename* The given file.* @throws IOException*************************/public void readData(String paraFilename, int paraNumUsers, int paraNumItems,int paraNumRatings) throws IOException {File tempFile = new File(paraFilename);if (!tempFile.exists()) {System.out.println("File " + paraFilename + " does not exists.");System.exit(0);} // Of ifBufferedReader tempBufferReader = new BufferedReader(new FileReader(tempFile));// Allocate space.dataset = new Triple[paraNumRatings];String tempString;String[] tempStringArray;for (int i = 0; i < paraNumRatings; i++) {tempString = tempBufferReader.readLine();tempStringArray = tempString.split(",");dataset[i] = new Triple(Integer.parseInt(tempStringArray[0]),Integer.parseInt(tempStringArray[1]), Double.parseDouble(tempStringArray[2]));} // Of for itempBufferReader.close();}// Of readData/*************************** Initialize subspaces. Each value is in [0, 1].*************************/void initializeSubspaces() {userSubspace = new double[numUsers][rank];for (int i = 0; i < numUsers; i++) {for (int j = 0; j < rank; j++) {userSubspace[i][j] = rand.nextDouble();} // Of for j} // Of for iitemSubspace = new double[numItems][rank];for (int i = 0; i < numItems; i++) {for (int j = 0; j < rank; j++) {itemSubspace[i][j] = rand.nextDouble();} // Of for j} // Of for i}// Of initializeSubspaces/*************************** Predict the rating of the user to the item** @param paraUser* The user index.*************************/public double predict(int paraUser, int paraItem) {double resultValue = 0;for (int i = 0; i < rank; i++) {// The row vector of an user and the column vector of an itemresultValue += userSubspace[paraUser][i] * itemSubspace[paraItem][i];} // Of for ireturn resultValue;}// Of predict/*************************** Train.** @param paraRounds* The number of rounds.*************************/public void train(int paraRounds) {initializeSubspaces();for (int i = 0; i < paraRounds; i++) {updateNoRegular();if (i % 50 == 0) {// Show the processSystem.out.println("Round " + i);System.out.println("MAE: " + mae());} // Of if} // Of for i}// Of train/*************************** Update sub-spaces using the training data.*************************/public void updateNoRegular() {for (int i = 0; i < numRatings; i++) {int tempUserId = dataset[i].user;int tempItemId = dataset[i].item;double tempRate = dataset[i].rating;double tempResidual = tempRate - predict(tempUserId, tempItemId); // Residual// Update user subspacedouble tempValue = 0;for (int j = 0; j < rank; j++) {tempValue = 2 * tempResidual * itemSubspace[tempItemId][j];userSubspace[tempUserId][j] += alpha * tempValue;} // Of for j// Update item subspacefor (int j = 0; j < rank; j++) {tempValue = 2 * tempResidual * userSubspace[tempUserId][j];itemSubspace[tempItemId][j] += alpha * tempValue;} // Of for j} // Of for i}// Of updateNoRegular/*************************** Compute the RSME.** @return RSME of the current factorization.*************************/public double rsme() {double resultRsme = 0;int tempTestCount = 0;for (int i = 0; i < numRatings; i++) {int tempUserIndex = dataset[i].user;int tempItemIndex = dataset[i].item;double tempRate = dataset[i].rating;double tempPrediction = predict(tempUserIndex, tempItemIndex);// +// DataInfo.mean_rating;if (tempPrediction < ratingLowerBound) {tempPrediction = ratingLowerBound;} else if (tempPrediction > ratingUpperBound) {tempPrediction = ratingUpperBound;} // Of ifdouble tempError = tempRate - tempPrediction;resultRsme += tempError * tempError;tempTestCount++;} // Of for ireturn Math.sqrt(resultRsme / tempTestCount);}// Of rsme/*************************** Compute the MAE.** @return MAE of the current factorization.*************************/public double mae() {double resultMae = 0;int tempTestCount = 0;for (int i = 0; i < numRatings; i++) {int tempUserIndex = dataset[i].user;int tempItemIndex = dataset[i].item;double tempRate = dataset[i].rating;double tempPrediction = predict(tempUserIndex, tempItemIndex);if (tempPrediction < ratingLowerBound) {tempPrediction = ratingLowerBound;} // Of ifif (tempPrediction > ratingUpperBound) {tempPrediction = ratingUpperBound;} // Of ifdouble tempError = tempRate - tempPrediction;resultMae += Math.abs(tempError);// System.out.println("resultMae: " + resultMae);tempTestCount++;} // Of for ireturn (resultMae / tempTestCount);}// Of mae/*************************** Compute the MAE.** @return MAE of the current factorization.*************************/public static void testTrainingTesting(String paraFilename, int paraNumUsers, int paraNumItems,int paraNumRatings, double paraRatingLowerBound, double paraRatingUpperBound,int paraRounds) {try {// Step 1. read the training and testing dataMatrixFactorization tempMF = new MatrixFactorization(paraFilename, paraNumUsers,paraNumItems, paraNumRatings, paraRatingLowerBound, paraRatingUpperBound);tempMF.setParameters(5, 0.0001, 0.005);// Step 3. update and predictSystem.out.println("Begin Training ! ! !");tempMF.train(paraRounds);double tempMAE = tempMF.mae();double tempRSME = tempMF.rsme();System.out.println("Finally, MAE = " + tempMAE + ", RSME = " + tempRSME);} catch (Exception e) {e.printStackTrace();} // Of try}// Of testTrainingTesting/*************************** @param args*************************/public static void main(String args[]) {testTrainingTesting("C:\\Users\\86183\\IdeaProjects\\deepLearning\\src\\main\\java\\resources\\movielens-943u1682m.txt", 943, 1682, 10000, 1, 5, 2000);}// Of mainpublic class Triple {public int user;public int item;public double rating;/************************ The constructor.**********************/public Triple() {user = -1;item = -1;rating = -1;}// Of the first constructor/************************ The constructor.**********************/public Triple(int paraUser, int paraItem, double paraRating) {user = paraUser;item = paraItem;rating = paraRating;}// Of the first constructor/************************ Show me.**********************/public String toString() {return "" + user + ", " + item + ", " + rating;}// Of toString}// Of class Triple}// Of class MatrixFactorization
结果:

相关文章:
Day 69-70:矩阵分解
代码: package dl;import java.io.*; import java.util.Random;/** Matrix factorization for recommender systems.*/public class MatrixFactorization {/*** Used to generate random numbers.*/Random rand new Random();/*** Number of users.*/int numUsers…...
数据结构:树的存储结构
学习树之前,我们已经了解了二叉树的顺序存储和链式存储,哪么我们如何来存储普通型的树结构的数据?如下图1: 如图1所示,这是一颗普通的树,我们要如何来存储呢?通常,存储这种树结构的数…...
Vue前端渲染blob二进制对象图片的方法
近期做开发,联调接口。接口返回的是一张图片,是对二进制图片处理并渲染,特此记录一下。 本文章是转载文章,原文章:Vue前端处理blob二进制对象图片的方法 接口response是下图 显然,获取到的是一堆乱码&…...
Java的标记接口(Marker Interface)
Java中的标记接口(Marker Interface)是一个空接口,接口内什么也没有定义。它标识了一种能力,标识继承自该接口的接口、实现了此接口的类具有某种能力。 例如,jdk的com.sun.org.apache.xalan.internal.xsltc.trax.Temp…...
Kafka基础架构与核心概念
Kafka简介 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。架构特点是分区、多副本、多生产者、多订阅者,性能特点主要是…...
观察者模式与观察者模式实例EventBus
什么是观察者模式 顾名思义,观察者模式就是在多个对象之间,定义一个一对多的依赖,当一个对象状态改变时,所有依赖这个对象的对象都会自动收到通知。 观察者模式也称为发布订阅模式(Publish-Subscribe Design Pattern)࿰…...
科普 | OSI模型
本文简要地介绍 OSI 模型 1’ 2’ 3。 更新:2023 / 7 / 23 科普 | OSI模型 术语节点链路协议网络拓扑 概念作用结构应用层表示层会话层传输层网络层数据链路层物理层 数据如何流动OSI 和TCP/IP 的对应关系和协议参考链接 术语 节点 节点( Node &#…...
redis相关异常之RedisConnectionExceptionRedisCommandTimeoutException
本文只是分析Letture类型的Redis 池化连接出现的连接超时异常、读超时异常问题。 1.RedisConnectionException 默认是10秒。 通过如下可以配置: public class MyLettuceClientConfigurationBuilderCustomizer implements LettuceClientConfigurationBuilderCusto…...
Merge the squares! 2023牛客暑期多校训练营4-H
登录—专业IT笔试面试备考平台_牛客网 题目大意:有n*n个边长为1的小正方形摆放在边长为n的大正方形中,每次可以选择不超过50个正方形,将其合并为一个更大的正方形,求一种可行的操作使所有小正方形都被合并成一个n*n的大正方形 1…...
STM32 串口学习(二)
要用跳线帽将PA9与RXD相连,PA10与TXD相连。 软件设计 void uart_init(u32 baud) {//UART 初始化设置UART1_Handler.InstanceUSART1; //USART1UART1_Handler.Init.BaudRatebound; //波特率UART1_Handler.Init.WordLengthUART_WORDLENGTH_8B; //字长为 8 位数据格式U…...
点大商城V2_2.5.0 全开源版 商家自营+多商户入驻 百度+支付宝+QQ+头条+小程序端+unipp开源前端安装测试教程
安装测试环境:Nginx 1.20PHP7.2MySQL 5.6 修复了无法上传开放平台问题 安装说明: 1、上传后端目录至网站 2、导入提供的数据库文件 3、修改数据库配置文件根目录下config.php,增加数据库用户名和密码 4、网站后台直接访问网址ÿ…...
“深入理解SpringBoot:从入门到精通“
标题:深入理解Spring Boot:从入门到精通 摘要:本文将介绍Spring Boot的基本概念和核心特性,并通过示例代码演示如何使用Spring Boot构建一个简单的Web应用程序。 1. 简介 Spring Boot是一个开源的Java框架,旨在简化基…...
PCB绘制时踩的坑 - SOT-223封装
SOT-223封装并不是同一的,细分的话可以分为两种常用的封装。尤其是tab脚的属性很容易搞错。如果你想着用tab脚连接有属性的铺铜,来提高散热效率,那么你一定要注意你购买的器件tab脚的属性。 第一种如下图,第1脚为GND,第…...
Go语法入门 + 项目实战
👂 Take me Hand Acoustic - Ccile Corbel - 单曲 - 网易云音乐 第3个小项目有问题,不能在Windows下跑,懒得去搜Linux上怎么跑了,已经落下进度了.... 目录 😳前言 🍉Go两小时 🔑小项目实战 …...
QT控件通过qss设置子控件的对齐方式、大小自适应等
一些复杂控件,是有子控件的,每个子控件,都可以通过qss的双冒号选择器来选中,进行独特的样式定义。很多控件都有子控件,太多了,后面单独写一篇文章来介绍各个控件的子控件。这里就随便来几个例子 例如下拉列…...
基于java在线收银系统设计与实现
摘要 科技的力量总是在关键的地方改变着人们的生活,不仅如此,我们的生活也是离不开这样或者那样的科技改变,有的消费者没有时间去商场购物,那么电商和快递的结合让端口到消费者的距离不再遥远;有的房客因地域或者工作的…...
Linux--进程的新建状态
新建状态: 操作系统创建了进程的内核数据结构(task_struct、mm_struct、页表),但是页表没有创建映射关系,而且磁盘里的程序的代码和数据未加载到物理内存...
区间dp,合并石子模板题
设有 N 堆石子排成一排,其编号为 1,2,3,…,N。 每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。 每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的…...
C++代码格式化工具clang-format详细介绍
文章目录 clang-format思考代码风格指南生成您的配置运行 clang-format禁用一段代码的格式设置clang-format的设置预览 clang-format 我曾在许多编程团队工作过,这些团队名义上都有“编程风格指南”。该指南经常被写下来并放置在开发人员很少查看的地方。几乎在每种…...
CentOS 7安装PostgreSQL 15版本数据库
目录 一、何为PostgreSQL? 二、PostgreSQL安装 2.1安装依赖 2.2 执行安装 2.3 数据库初始化 2.4 配置环境变量 2.5 创建数据库 2.6 配置远程 2.7 测试远程 三、常用命令 四、用户创建和数据库权限 一、何为PostgreSQL? PostgreSQL是以加州大学…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
comfyui 工作流中 图生视频 如何增加视频的长度到5秒
comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗? 在ComfyUI中实现图生视频并延长到5秒,需要结合多个扩展和技巧。以下是完整解决方案: 核心工作流配置(24fps下5秒120帧) #mermaid-svg-yP…...
