Box-Cox 变换
Box-cox 变化公式如下:
y ( λ ) = { y λ − 1 λ λ ≠ 0 l n ( y ) λ = 0 y^{(\lambda)}=\left\{ \begin{aligned} \frac{y^{\lambda} - 1}{\lambda} && \lambda \ne 0 \\ ln(y) && \lambda = 0 \end{aligned} \right. y(λ)=⎩ ⎨ ⎧λyλ−1ln(y)λ=0λ=0
y ( λ ) = { ( y + a ) λ − 1 λ λ ≠ 0 l n ( y + a ) λ = 0 y^{(\lambda)}=\left\{ \begin{aligned} \frac{(y + a)^{\lambda} - 1}{\lambda} && \lambda \ne 0 \\ ln(y + a) && \lambda = 0 \end{aligned} \right. y(λ)=⎩ ⎨ ⎧λ(y+a)λ−1ln(y+a)λ=0λ=0
根据参数 λ \lambda λ的取值不同,box-cox变换包含了三类函数族:对数函数族、指数函数族、导致函数。
变换的目标是使得变换后因变量线性回归模型的等方差、不相关、正太等假设:
y ( λ ) = [ y 1 ( λ ) y 2 ( λ ) . . . y n ( λ ) ] ∼ N ( X β , σ 2 I ) \bold{y}^{(\lambda)} = \left[\begin{array}{c} y_1^{(\lambda)} \\ y_2^{(\lambda)} \\ ... \\ y_n^{(\lambda)} \end{array}\right]\sim\mathcal{N}(\bold{X}\bold{\beta}, \sigma^2\bold{I}) y(λ)= y1(λ)y2(λ)...yn(λ) ∼N(Xβ,σ2I)
L ( β , σ 2 ) = ( 1 2 π σ ) n e x p ( − 1 2 σ 2 ( y ( λ ) − X β ) ′ ( y ( λ ) − X β ) ) J L(\beta,\sigma^2) = (\frac{1}{\sqrt{2\pi}\sigma})^nexp(-\frac{1}{2\sigma^2}(\bold{y}^{(\lambda)} - \bold{X\beta})'(\bold{y}^{(\lambda)} - \bold{X\beta}))\bold{J} L(β,σ2)=(2πσ1)nexp(−2σ21(y(λ)−Xβ)′(y(λ)−Xβ))J
J = ∏ i = 1 n ∣ d y i ( λ ) d y i ∣ = ∏ i = 1 n y i λ − 1 \bold{J} = \prod_{i=1}^n|\frac{dy_i^{(\lambda)}}{dy_i}| = \prod_{i=1}^ny_i^{\lambda - 1} J=i=1∏n∣dyidyi(λ)∣=i=1∏nyiλ−1
当 λ \lambda λ固定, J J J是不依赖 β , σ 2 \beta,\sigma^2 β,σ2的常数。
求得 β , σ 2 \beta,\sigma^2 β,σ2的最大似然估计为:
β ^ = ( X ′ X ) − 1 X ′ y ( λ ) \hat{\beta} = (X'X)^{-1}X'y^{(\lambda)} β^=(X′X)−1X′y(λ)
σ ^ 2 = 1 n y ( λ ) ′ ( I − X ( X ′ X ) − 1 X ′ ) y ( λ ) = 1 n S S E ( λ , y ( λ ) ) , S S E ( λ , y ( λ ) ) = y ( λ ) ′ ( I − X ( X ′ X ) − 1 X ′ ) y ( λ ) \hat{\sigma}^2 = \frac{1}{n}y^{(\lambda)'}(I - X(X'X)^{-1}X')y^{(\lambda)} = \frac{1}{n}SSE(\lambda, y^{(\lambda)}), SSE(\lambda, y^{(\lambda)}) = y^{(\lambda)'}(I - X(X'X)^{-1}X')y^{(\lambda)} σ^2=n1y(λ)′(I−X(X′X)−1X′)y(λ)=n1SSE(λ,y(λ)),SSE(λ,y(λ))=y(λ)′(I−X(X′X)−1X′)y(λ)
对应的似然函数为:
L ( β ^ , σ ^ 2 ) = ( 2 π e S S E ( λ , y ( λ ) ) n ) − n 2 ∗ J L(\hat{\beta}, \hat{\sigma}^2) = (2\pi e \frac{SSE(\lambda, y^{(\lambda)})}{n})^{-\frac{n}{2}} * J L(β^,σ^2)=(2πenSSE(λ,y(λ)))−2n∗J
l n L ( β ^ , σ ^ 2 ) = − n 2 l n ( S S E ( λ , y λ ) ) + l n ( J ) = − n 2 l n ( S S E ( λ , z ( λ ) ) ) lnL(\hat{\beta},\hat{\sigma}^2) = -\frac{n}{2}ln(SSE(\lambda,y^{\lambda})) + ln(J) = -\frac{n}{2}ln(SSE(\lambda, z^{(\lambda)})) lnL(β^,σ^2)=−2nln(SSE(λ,yλ))+ln(J)=−2nln(SSE(λ,z(λ)))
z ( λ ) = y ( λ ) J z^{(\lambda)} = \frac{y^{(\lambda)}}{\bold{J}} z(λ)=Jy(λ)
为了找出 λ \lambda λ的极大似然估计,使得 S S E ( λ , z ( λ ) ) SSE(\lambda,z^{(\lambda)}) SSE(λ,z(λ))达到最小即可。
相关文章:
Box-Cox 变换
Box-cox 变化公式如下: y ( λ ) { y λ − 1 λ λ ≠ 0 l n ( y ) λ 0 y^{(\lambda)}\left\{ \begin{aligned} \frac{y^{\lambda} - 1}{\lambda} && \lambda \ne 0 \\ ln(y) && \lambda 0 \end{aligned} \right. y(λ)⎩ ⎨ ⎧λyλ−1ln…...
Linux wc命令用于统计文件的行数,字符数,字节数
Linux wc命令用于计算字数。 利用wc指令我们可以计算文件的Byte数、字数、或是列数,若不指定文件名称、或是所给予的文件名为"-",则wc指令会从标准输入设备读取数据。 语法 wc [-clw][–help][–version][文件…] 参数: -c或–b…...

Python读取多个栅格文件并提取像元的各波段时间序列数据与变化值
本文介绍基于Python语言,读取文件夹下大量栅格遥感影像文件,并基于给定的一个像元,提取该像元对应的全部遥感影像文件中,指定多个波段的数值;修改其中不在给定范围内的异常值,并计算像元数值在每一景遥感影…...
Linux 之 wget curl
wget 命令 wget是非交互式的文件下载器,可以在命令行内下载网络文件 语法: wget [-b] url 选项: -b ,可选,background 后台下载,会将日志写入到 当前工作目录的wget-log文件 参数 url : 下载链…...
AngularJS 和 React区别
目录 1. 背景:2. 版本:3. 应用场景:4. 语法:5. 优缺点:6. 代码示例: AngularJS 和 React 是两个目前最为流行的前端框架之一。它们有一些共同点,例如都是基于 JavaScript 的开源框架,…...

【Solr】Solr搜索引擎使用
文章目录 一、什么是Solr?二 、数据库本身就支持搜索啊,干嘛还要搞个什么solr?三、如果我们想要使用solr那么首先我们得安装它 一、什么是Solr? 其实我们大多数人都使用过Solr,也许你不会相信我说的这句话,但是事实却是如此啊 ! 每当你想买自己喜欢的东东时,你可能会打开某…...

一起学算法(选择排序篇)
距离上次更新已经很久了,以前都是非常认真的写笔记进行知识分享,但是带来的情况并不是很好,一度认为发博客是没有意义的,但是这几天想了很多,已经失去了当时写博客的初心了,但是我觉得应该做点有意义的事&a…...
智能体的主观和能动
摘要 智能体的主动性是提升智能机器的能力的关键。围绕智能体的主动性存在很多思想迷雾,本文继续我们以前的工作,试图清理这些概念上的问题。我们的讨论显示:要研究主动性,并不一定需要研究意识,仅需要研究主观和能动就…...

AB 压力测试
服务器配置 阿里云Ubuntu 64位 CPU1 核 内存2 GB 公网带宽1 Mbps ab -c100 -n1000 http://127.0.0.1:9501/ -n:在测试会话中所执行的请求个数。默认时,仅执行一个请求。 -c:一次产生的请求个数。默认是一次一个。 ab -c 100 -n 200 ht…...

多旋翼物流无人机节能轨迹规划(Python代码实现)
目录 💥1 概述 📚2 运行结果 🌈3 Python代码实现 🎉4 参考文献 💥1 概述 多旋翼物流无人机的节能轨迹规划是一项重要的技术,可以有效减少无人机的能量消耗,延长飞行时间,提高物流效率…...

Vue通过指令 命令将打包好的dist静态文件上传到腾讯云存储桶 (保存原有存储目录结构)
1、在项目根目录创建uploadToCOS.js文件 (建议起简单的名字 方便以后上传输入命令方便) 2、uploadToCOS.js文件代码编写 const path require(path); const fs require(fs); const COS require(cos-nodejs-sdk-v5);// 配置腾讯云COS参数 const cos n…...
Linux 新硬盘分区,挂载
在Linux系统中,当你插入新的硬盘时,你需要进行一些步骤来使系统识别并使用它。以下是一些常见的步骤: 确保硬盘已正确连接到计算机。检查硬盘的电源和数据线是否牢固连接。 打开终端或命令行界面。 运行以下命令来扫描新硬盘: s…...

Stable Diffusion 开源模型 SDXL 1.0 发布
关于 SDXL 模型,之前写过两篇: Stable Diffusion即将发布全新版本Stable Diffusion XL 带来哪些新东西? 一晃四个月的时间过去了,Stability AI 团队终于发布了 SDXL 1.0。当然在这中间发布过几个中间版本,分别是 SDXL …...
NoSQL--------- Redis配置与优化
目录 一、关系型数据库与非关系型数据库 1.1关系型数据库 1.2非关系型数据库Nosql 1.3关系与非关系区别 1.4非关系产生的背景 1.5总结 二、Redis介绍 2.1Redis简介 2.3Redis优点 2.4 Redis为什么这么快? 三、Redis安装部署 3.1安装redis 3.2测试redis 3.3r…...
Ubuntu中关闭防火墙
在Ubuntu中关闭防火墙可以通过以下步骤进行: 查看防火墙状态: sudo ufw status如果防火墙状态为active(活动状态),则执行以下命令来停用防火墙: sudo ufw disable输入以下命令确认是否停用防火墙&#x…...
java-马踏棋盘
在8x8的国际棋盘上,按照马走日的规则,验证是否能够走遍棋盘。 1、创建棋盘 chessBoard,是一个二维数组。 2、将当前位置设置为已经访问,然后根据当前位置,计算马儿还能走哪些位置,并放入到一个集合中&…...

系统架构设计师-软件架构设计(4)
目录 一、软件架构评估 1、敏感点 2、权衡点 3、风险点 4、非风险点 5、架构评估方法 5.1 基于调查问卷或检查表的方式 5.2 基于度量的方式 5.3 基于场景的方式 6、基于场景的评估方法 6.1 软件架构分析法(SAAM) 6.2 架构权衡分析法(ATAM&am…...

51单片机--AD/DA
AD/DA介绍 AD和DA是模拟信号和数字信号之间的转换过程。 AD,全称为模拟到数字(Analog-to-Digital),指的是将模拟信号转换为数字信号的过程。在AD转换中,模拟信号经过采样、量化和编码等步骤,被转换为离散的…...

网络安全-防御需知
目录 网络安全-防御 1.网络安全常识及术语 资产 漏洞 0day 1day 后门 exploit APT 2.什么会出现网络安全问题? 网络环境的开放性 协议栈自身的脆弱性 操作系统自身的漏洞 人为原因 客观原因 硬件原因 缓冲区溢出攻击 缓冲区溢出攻击原理 其他攻击…...

C#百万数据处理
C#百万数据处理 在我们经验的不断增长中不可避免的会遇到一些数据量很大操作也复杂的业务 这种情况我们如何取优化如何去处理呢?一般都要根据业务逻辑和背景去进行合理的改进。 文章目录 C#百万数据处理前言一、项目业务需求和开发背景项目开发背景数据量计算业务需…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...

基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

Linux 下 DMA 内存映射浅析
序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存,但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程,可以参考这篇文章,我觉得写的非常…...
怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)
+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...

负载均衡器》》LVS、Nginx、HAproxy 区别
虚拟主机 先4,后7...