当前位置: 首页 > news >正文

Box-Cox 变换

Box-cox 变化公式如下:

y ( λ ) = { y λ − 1 λ λ ≠ 0 l n ( y ) λ = 0 y^{(\lambda)}=\left\{ \begin{aligned} \frac{y^{\lambda} - 1}{\lambda} && \lambda \ne 0 \\ ln(y) && \lambda = 0 \end{aligned} \right. y(λ)= λyλ1ln(y)λ=0λ=0

y ( λ ) = { ( y + a ) λ − 1 λ λ ≠ 0 l n ( y + a ) λ = 0 y^{(\lambda)}=\left\{ \begin{aligned} \frac{(y + a)^{\lambda} - 1}{\lambda} && \lambda \ne 0 \\ ln(y + a) && \lambda = 0 \end{aligned} \right. y(λ)= λ(y+a)λ1ln(y+a)λ=0λ=0

根据参数 λ \lambda λ的取值不同,box-cox变换包含了三类函数族:对数函数族、指数函数族、导致函数。

变换的目标是使得变换后因变量线性回归模型的等方差、不相关、正太等假设:

y ( λ ) = [ y 1 ( λ ) y 2 ( λ ) . . . y n ( λ ) ] ∼ N ( X β , σ 2 I ) \bold{y}^{(\lambda)} = \left[\begin{array}{c} y_1^{(\lambda)} \\ y_2^{(\lambda)} \\ ... \\ y_n^{(\lambda)} \end{array}\right]\sim\mathcal{N}(\bold{X}\bold{\beta}, \sigma^2\bold{I}) y(λ)= y1(λ)y2(λ)...yn(λ) N(Xβ,σ2I)

L ( β , σ 2 ) = ( 1 2 π σ ) n e x p ( − 1 2 σ 2 ( y ( λ ) − X β ) ′ ( y ( λ ) − X β ) ) J L(\beta,\sigma^2) = (\frac{1}{\sqrt{2\pi}\sigma})^nexp(-\frac{1}{2\sigma^2}(\bold{y}^{(\lambda)} - \bold{X\beta})'(\bold{y}^{(\lambda)} - \bold{X\beta}))\bold{J} L(β,σ2)=(2π σ1)nexp(2σ21(y(λ)Xβ)(y(λ)Xβ))J

J = ∏ i = 1 n ∣ d y i ( λ ) d y i ∣ = ∏ i = 1 n y i λ − 1 \bold{J} = \prod_{i=1}^n|\frac{dy_i^{(\lambda)}}{dy_i}| = \prod_{i=1}^ny_i^{\lambda - 1} J=i=1ndyidyi(λ)=i=1nyiλ1

λ \lambda λ固定, J J J是不依赖 β , σ 2 \beta,\sigma^2 β,σ2的常数。

求得 β , σ 2 \beta,\sigma^2 β,σ2的最大似然估计为:

β ^ = ( X ′ X ) − 1 X ′ y ( λ ) \hat{\beta} = (X'X)^{-1}X'y^{(\lambda)} β^=(XX)1Xy(λ)

σ ^ 2 = 1 n y ( λ ) ′ ( I − X ( X ′ X ) − 1 X ′ ) y ( λ ) = 1 n S S E ( λ , y ( λ ) ) , S S E ( λ , y ( λ ) ) = y ( λ ) ′ ( I − X ( X ′ X ) − 1 X ′ ) y ( λ ) \hat{\sigma}^2 = \frac{1}{n}y^{(\lambda)'}(I - X(X'X)^{-1}X')y^{(\lambda)} = \frac{1}{n}SSE(\lambda, y^{(\lambda)}), SSE(\lambda, y^{(\lambda)}) = y^{(\lambda)'}(I - X(X'X)^{-1}X')y^{(\lambda)} σ^2=n1y(λ)(IX(XX)1X)y(λ)=n1SSE(λ,y(λ)),SSE(λ,y(λ))=y(λ)(IX(XX)1X)y(λ)

对应的似然函数为:

L ( β ^ , σ ^ 2 ) = ( 2 π e S S E ( λ , y ( λ ) ) n ) − n 2 ∗ J L(\hat{\beta}, \hat{\sigma}^2) = (2\pi e \frac{SSE(\lambda, y^{(\lambda)})}{n})^{-\frac{n}{2}} * J L(β^,σ^2)=(2πenSSE(λ,y(λ)))2nJ

l n L ( β ^ , σ ^ 2 ) = − n 2 l n ( S S E ( λ , y λ ) ) + l n ( J ) = − n 2 l n ( S S E ( λ , z ( λ ) ) ) lnL(\hat{\beta},\hat{\sigma}^2) = -\frac{n}{2}ln(SSE(\lambda,y^{\lambda})) + ln(J) = -\frac{n}{2}ln(SSE(\lambda, z^{(\lambda)})) lnL(β^,σ^2)=2nln(SSE(λ,yλ)+ln(J=2nln(SSE(λ,z(λ)))

z ( λ ) = y ( λ ) J z^{(\lambda)} = \frac{y^{(\lambda)}}{\bold{J}} z(λ)=Jy(λ)

为了找出 λ \lambda λ的极大似然估计,使得 S S E ( λ , z ( λ ) ) SSE(\lambda,z^{(\lambda)}) SSE(λ,z(λ))达到最小即可。

相关文章:

Box-Cox 变换

Box-cox 变化公式如下: y ( λ ) { y λ − 1 λ λ ≠ 0 l n ( y ) λ 0 y^{(\lambda)}\left\{ \begin{aligned} \frac{y^{\lambda} - 1}{\lambda} && \lambda \ne 0 \\ ln(y) && \lambda 0 \end{aligned} \right. y(λ)⎩ ⎨ ⎧​λyλ−1​ln…...

Linux wc命令用于统计文件的行数,字符数,字节数

Linux wc命令用于计算字数。 利用wc指令我们可以计算文件的Byte数、字数、或是列数,若不指定文件名称、或是所给予的文件名为"-",则wc指令会从标准输入设备读取数据。 语法 wc [-clw][–help][–version][文件…] 参数: -c或–b…...

Python读取多个栅格文件并提取像元的各波段时间序列数据与变化值

本文介绍基于Python语言,读取文件夹下大量栅格遥感影像文件,并基于给定的一个像元,提取该像元对应的全部遥感影像文件中,指定多个波段的数值;修改其中不在给定范围内的异常值,并计算像元数值在每一景遥感影…...

Linux 之 wget curl

wget 命令 wget是非交互式的文件下载器,可以在命令行内下载网络文件 语法: wget [-b] url 选项: -b ,可选,background 后台下载,会将日志写入到 当前工作目录的wget-log文件 参数 url : 下载链…...

AngularJS 和 React区别

目录 1. 背景:2. 版本:3. 应用场景:4. 语法:5. 优缺点:6. 代码示例: AngularJS 和 React 是两个目前最为流行的前端框架之一。它们有一些共同点,例如都是基于 JavaScript 的开源框架&#xff0c…...

【Solr】Solr搜索引擎使用

文章目录 一、什么是Solr?二 、数据库本身就支持搜索啊,干嘛还要搞个什么solr?三、如果我们想要使用solr那么首先我们得安装它 一、什么是Solr? 其实我们大多数人都使用过Solr,也许你不会相信我说的这句话,但是事实却是如此啊 ! 每当你想买自己喜欢的东东时,你可能会打开某…...

一起学算法(选择排序篇)

距离上次更新已经很久了,以前都是非常认真的写笔记进行知识分享,但是带来的情况并不是很好,一度认为发博客是没有意义的,但是这几天想了很多,已经失去了当时写博客的初心了,但是我觉得应该做点有意义的事&a…...

智能体的主观和能动

摘要 智能体的主动性是提升智能机器的能力的关键。围绕智能体的主动性存在很多思想迷雾,本文继续我们以前的工作,试图清理这些概念上的问题。我们的讨论显示:要研究主动性,并不一定需要研究意识,仅需要研究主观和能动就…...

AB 压力测试

服务器配置 阿里云Ubuntu 64位 CPU1 核 内存2 GB 公网带宽1 Mbps ab -c100 -n1000 http://127.0.0.1:9501/ -n:在测试会话中所执行的请求个数。默认时,仅执行一个请求。 -c:一次产生的请求个数。默认是一次一个。 ab -c 100 -n 200 ht…...

多旋翼物流无人机节能轨迹规划(Python代码实现)

目录 💥1 概述 📚2 运行结果 🌈3 Python代码实现 🎉4 参考文献 💥1 概述 多旋翼物流无人机的节能轨迹规划是一项重要的技术,可以有效减少无人机的能量消耗,延长飞行时间,提高物流效率…...

Vue通过指令 命令将打包好的dist静态文件上传到腾讯云存储桶 (保存原有存储目录结构)

1、在项目根目录创建uploadToCOS.js文件 (建议起简单的名字 方便以后上传输入命令方便) 2、uploadToCOS.js文件代码编写 const path require(path); const fs require(fs); const COS require(cos-nodejs-sdk-v5);// 配置腾讯云COS参数 const cos n…...

Linux 新硬盘分区,挂载

在Linux系统中,当你插入新的硬盘时,你需要进行一些步骤来使系统识别并使用它。以下是一些常见的步骤: 确保硬盘已正确连接到计算机。检查硬盘的电源和数据线是否牢固连接。 打开终端或命令行界面。 运行以下命令来扫描新硬盘: s…...

Stable Diffusion 开源模型 SDXL 1.0 发布

关于 SDXL 模型,之前写过两篇: Stable Diffusion即将发布全新版本Stable Diffusion XL 带来哪些新东西? 一晃四个月的时间过去了,Stability AI 团队终于发布了 SDXL 1.0。当然在这中间发布过几个中间版本,分别是 SDXL …...

NoSQL--------- Redis配置与优化

目录 一、关系型数据库与非关系型数据库 1.1关系型数据库 1.2非关系型数据库Nosql 1.3关系与非关系区别 1.4非关系产生的背景 1.5总结 二、Redis介绍 2.1Redis简介 2.3Redis优点 2.4 Redis为什么这么快? 三、Redis安装部署 3.1安装redis 3.2测试redis 3.3r…...

Ubuntu中关闭防火墙

在Ubuntu中关闭防火墙可以通过以下步骤进行: 查看防火墙状态: sudo ufw status如果防火墙状态为active(活动状态),则执行以下命令来停用防火墙: sudo ufw disable输入以下命令确认是否停用防火墙&#x…...

java-马踏棋盘

在8x8的国际棋盘上,按照马走日的规则,验证是否能够走遍棋盘。 1、创建棋盘 chessBoard,是一个二维数组。 2、将当前位置设置为已经访问,然后根据当前位置,计算马儿还能走哪些位置,并放入到一个集合中&…...

系统架构设计师-软件架构设计(4)

目录 一、软件架构评估 1、敏感点 2、权衡点 3、风险点 4、非风险点 5、架构评估方法 5.1 基于调查问卷或检查表的方式 5.2 基于度量的方式 5.3 基于场景的方式 6、基于场景的评估方法 6.1 软件架构分析法(SAAM) 6.2 架构权衡分析法(ATAM&am…...

51单片机--AD/DA

AD/DA介绍 AD和DA是模拟信号和数字信号之间的转换过程。 AD,全称为模拟到数字(Analog-to-Digital),指的是将模拟信号转换为数字信号的过程。在AD转换中,模拟信号经过采样、量化和编码等步骤,被转换为离散的…...

网络安全-防御需知

目录 网络安全-防御 1.网络安全常识及术语 资产 漏洞 0day 1day 后门 exploit APT 2.什么会出现网络安全问题? 网络环境的开放性 协议栈自身的脆弱性 操作系统自身的漏洞 人为原因 客观原因 硬件原因 缓冲区溢出攻击 缓冲区溢出攻击原理 其他攻击…...

C#百万数据处理

C#百万数据处理 在我们经验的不断增长中不可避免的会遇到一些数据量很大操作也复杂的业务 这种情况我们如何取优化如何去处理呢?一般都要根据业务逻辑和背景去进行合理的改进。 文章目录 C#百万数据处理前言一、项目业务需求和开发背景项目开发背景数据量计算业务需…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

网站指纹识别

网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...