【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
本文使用SOMA和小波收缩来对图像进行去噪。选择传统的去噪方法需要事先了解破坏图像的噪声类型。此外,使用通用小波收缩进行图像去噪仅适用于被高斯噪声破坏的图像。
在此文中,我们使用 SOMA 查找小波收缩去噪的参数,例如选择小波和各种级别的阈值。我们的算法适用于破坏图像的各种噪声,如高斯,盐和胡椒等。
自组织迁移算法(Self-Organizing Migration Algorithm,简称SOMA)是一种基于进化算法的优化方法,被应用于图像去噪领域。图像去噪是一项重要的图像处理任务,旨在从包含噪声的图像中恢复出尽可能接近原始图像的清晰图像。
SOMA是基于群体智能的优化算法,受到生物进化和群体行为的启发。它通过构建一个代表潜在解空间的种群,并模拟物种迁移和竞争,逐步优化解空间中的每个个体,从而搜索到最佳的去噪结果。
在基于SOMA的图像去噪研究中,首先需要构建一个种群,其中每个个体代表一种可能的去噪方案。个体可以用一些参数来描述,例如滤波器的类型、尺寸和参数设置等。然后,通过评估每个个体的适应度函数来衡量其去噪效果,可以使用像峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标。
接下来,使用遗传算子(如交叉和变异)对种群进行进化操作,以生成新的个体。在进化过程中,适应度较高的个体将更有可能被选择和保留,从而逐渐改善整个种群的去噪能力。这个迭代过程将继续进行一定的代数或直到达到停止准则为止。
通过SOMA算法的迭代优化过程,最终可以得到一个或多个较优的去噪方案,选择其中的一个作为最终的去噪结果。这些方案能够减小图像中的噪声,并保持图像的细节和质量。
需要指出的是,基于SOMA的图像去噪研究是一个复杂的过程,涉及到参数的选择、适应度函数的设计以及算法的终止准则等方面。因此,在实际应用中,需要根据具体情况进行合理的设置和调整,以获得令人满意的去噪效果。
📚2 运行结果
主函数代码:
clc;
clear all;
close all;
%Read image and add noise
img = (im2double((imread('lena512.bmp'))));
imn = imnoise(img,'salt & pepper',0.05);
%Perform Denoising using SOMA
parameters = Run_SOMA(imn,img)
denoised_image = output_file(imn,parameters(1),parameters(2),parameters(3),parameters(4),round(parameters(5)),round(parameters(6)));
%Perform Denoising using Universal Thresholing (inbuilt MATLAB function)
[THR,SORH,KEEPAPP] = ddencmp('den','wv',imn);
dn1 = wdencmp('gbl',imn,'db4',2,THR,SORH,KEEPAPP);
%PSNR
psnr_org = PSNR(img,imn);
psnr_mat = PSNR(img,dn1);
psnr_denoise = PSNR(img,denoised_image);
%SSIM
ssim_org = ssim(img,imn);
ssim_mat = ssim(img,dn1);
ssim_denoise = ssim(img,denoised_image);
disp('PSNR Values')
disp('For Original Noisy image')
disp(psnr_org)
disp('For Universal Thresholding')
disp(psnr_mat)
disp('For SOMA')
disp(psnr_denoise)
disp('SSIM Values')
disp('For Original Noisy image')
disp(ssim_org)
disp('For Universal Thresholding')
disp(ssim_mat)
disp('For SOMA')
disp(ssim_denoise)
subplot(1,3,1)
imshow(imn)
title('Noisy image');
subplot(1,3,2)
imshow(dn1);
title('Denoised Image using Universal Thresholding')
subplot(1,3,3)
imshow(denoised_image)
title('Denoised Image using SOMA')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]Anupriya, Akash tayal, “Wavelet based Image Denoising using Self Organizing Migration Algorithm”,CiiT International Journal of Digital Image Processing, June 2012
🌈4 Matlab代码实现
相关文章:

【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

TMS WEB Core Crack,TMS软件Delphi组件RADical Web
TMS WEB Core Crack,TMS软件Delphi组件RADical Web 使用我们的现代web应用程序框架,可以节省宝贵的时间并创造丰富的用户体验。我们所有的工具都由经验丰富的开发人员组成的专门团队提供支持。您可以信赖卓越的服务、活跃的社区和我们不断的创新。TMS Software是您的…...

PHP使用Redis实战实录4:单例模式和面向过程操作redis的语法
PHP使用Redis实战实录系列 PHP使用Redis实战实录1:宝塔环境搭建、6379端口配置、Redis服务启动失败解决方案PHP使用Redis实战实录2:Redis扩展方法和PHP连接Redis的多种方案PHP使用Redis实战实录3:数据类型比较、大小限制和性能扩展PHP使用Re…...
解决:移动端H5的<video>初始化拿不到总时长
移动端 在<video>的初始化后,会调用如下事件。 canplay"canplay" 解决方案:<video>添加自动播放属性: autoplay"autoplay" 然后这个方法里,用js在0.01秒后主动关闭播放,接着在0.…...
百度云上传身份证获取身份信息封装
1.目录结构 -script_discerm ------------包 -discerm.py --------------主要逻辑 -__init__.py -id_care---------------文件夹 存放图片 2.安装模块 pip install urllib31.23 pip install requests pip install base64 3.各文件内容 2.1 discerm.py import jsonimpo…...
vscode 上cmake 版本过低
问题: 装了vscode中的camke插件后,报错如下: CMake 3.9 or higher is required. You are running version 3.3.2。 解决办法: 卸载掉插件的cmake。 到官网下载合适的版本,设置系统变量 然后重新下载camke tools&…...

OS-08-事件驱动:C10M是如何实现的?
08-事件驱动:C10M是如何实现的? 你好,我是陶辉。 上一讲介绍了广播与组播这种一对多通讯方式,从这一讲开始,我们回到主流的一对一通讯方式。 早些年我们谈到高并发,总是会提到C10K,这是指服务…...
mysql 主从同步排查和处理 Slave_IO、Slave_SQL
目录 查看主从是否同步 详解Slave_IO、Slave_SQL 判断主从完全同步 各个 Log_File 和 Log_Pos的关系 修复命令 查看主从是否同步 show slave status; Slave_IO_Running、Slave_SQL_Running,这两个值是Yes表示正常,No是异常 使用竖排显示…...

基于解析法和遗传算法相结合的配电网多台分布式电源降损配置(Matlab实现)
目录 1 概述 2 数学模型 2.1 问题表述 2.2 DG的最佳位置和容量(解析法) 2.3 使用 GA 进行最佳功率因数确定和 DG 分配 3 仿真结果与讨论 3.1 33 节点测试配电系统的仿真 3.2 69 节点测试配电系统仿真 4 结论 1 概述 为了使系统网损达到最低值&a…...
07mysql查询语句之子查询
#1.查询和Zlotkey相同部门的员工姓名和工资 SELECT last_name,salary FROM employees WHERE department_id IN ( SELECT department_id FROM employees WHERE last_name Zlotkey ); #2.查询工资比公司平均工资高的员工的员工号࿰…...
笙默考试管理系统-MyExamTest(22)
笙默考试管理系统-MyExamTest(22) 目录 一、 笙默考试管理系统-MyExamTest 二、 笙默考试管理系统-MyExamTest 三、 笙默考试管理系统-MyExamTest 四、 笙默考试管理系统-MyExamTest 五、 笙默考试管理系统-MyExamTest 笙默考试管理系统-MyExa…...

Windows 不同方式打开的cmd/dos窗口属性配置不同
文章目录 1. 默认值(控制台窗口)属性2. "C:\Windows\System32\cmd.exe" 属性3. "命令提示符"属性4. 自定义某标题cmd窗口属性5. cmd快捷方式的属性总结 最近在写某个批处理脚本时,意外发现 Windows系统中,在不…...
性能优化-webpack配置gzip
3步搞定,实测1.3Mjs压缩到363k,体积减少70% 1.装包 yarn add compression-webpack-plugin --dev 2.配置webpack 打开config/webpack.config.js 1)在 module.exports 导出函数前面引入插件 // gzip插件 const CompressionPlugin require(&qu…...

RabbitMQ 教程 | 第3章 客户端开发向导
👨🏻💻 热爱摄影的程序员 👨🏻🎨 喜欢编码的设计师 🧕🏻 擅长设计的剪辑师 🧑🏻🏫 一位高冷无情的编码爱好者 大家好,我是 DevO…...

基于深度学习的CCPD车牌检测系统(PyTorch+Pyside6+YOLOv5模型)
摘要:基于CCPD数据集的高精度车牌检测系统可用于日常生活中检测与定位车牌目标,利用深度学习算法可实现图片、视频、摄像头等方式的车牌目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集…...
input元素中的form属性有什么用?
在HTML中,input元素的form属性用于指定该输入字段所属的表单(form元素)。通过将input元素的form属性设置为相应的表单的id值,可以将输入字段与表单进行关联。 这个属性对于两个主要目的非常有用: 表单关联࿱…...

【数据结构篇C++实现】- 特殊的线性表 - 串
友情链接:C/C系列系统学习目录 文章目录 串🚀一、串的定义🚀二、串的存储结构🛴(一)串的顺序存储结构1、定长顺序存储表示2、堆分配存储表示 🛴(二)串的链式存储结构3、块…...
DevOps系列文章 之 Springboot单元测试
在没有代码生成工具或尝试一门新的 ORM框架时,当我们希望不去另外写 Service 和 Controller 来验证 DAO 层的代码不希望只通过接口请求的方式来验证时,这时候单元测试的方式就可以帮助我们满足这一需求。 在我们开发Web应用时,经常会直接去观…...

04 linux之C 语言高级编程
gcc和gdb GNU工具 编译工具:把一个源程序编译为一个可执行程序调试工具:能对执行程序进行源码或汇编级调试软件工程工具:用于协助多人开发或大型软件项目的管理,如make、CVS、Subvision其他工具:用于把多个目标文件链…...

深入学习 Redis - Stream、Geospatial、HyperLogLog、Bitmap、Bitfields 类型扩展
目录 前言 Stream geospatial HyperLogLog Bitmaps Bitfields 前言 redis 中最关键的五个数据类型 String、List、Hash、Set、Zset 应用最广泛,同时 redis 也推出了额外的 5 个数据类型,他们分别是针对特殊场景才进行的应用的. Ps:这几种…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》
引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...