08- 汽车产品聚类分析综合项目 (机器学习聚类算法) (项目八)
- 找出性价比较高的车
-
LabelEncoder: python:sklearn标签编码(LabelEncoder) sklearn.preprocessing.LabelEncoder的使用:在训练模型之前,通常都要对数据进行一定得处理。将类别编号是一种常用的处理方法,比如把类别“电脑”,“手机”编号为0和1,可使用LabelEncoder函数。
-
作用: 将n个类别编码为0~n-1之间的整数(包括0和n-1)
-
- 找出聚类种类最佳参数
sse =[]
ss = []
for k in range(2,11):kmeans = KMeans(n_clusters= k)kmeans.fit(train_x)sse.append(kmeans.inertia_)ss.append(silhouette_score(train_x,kmeans.predict(train_x)))
- kmean 聚类算法模型
kmeans = KMeans(n_clusters=8)
kmeans.fit(train_x)
predict_y = kmeans.predict(train_x) # 预测
汽车产品聚类分析综合项目实战
现在人们购车成为稀松平常,你的第一辆车是什么品牌,你打算什么时候更换车辆?汽车品牌多如牛毛,使用数据分析相关知识点,使用机器学习中的聚类算法,进行建模,从而对根据汽车相关属性对汽车进行类别划分,帮你选好车!熟悉算法建模业务流程,掌握机器学习建模的思想和基本操作。
- 数据加载
- 数值编码化
- 归一化操作
- Kmeans算法参数筛选
- 分层聚类使用
- DBSCAN算法使用
- 对比不同算法效果
1 导入模块
# 使用 KMeans 进行聚类,导入库
from sklearn.cluster import KMeans # 聚类算法
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
# 预处理
from sklearn import preprocessing # 归一化
from sklearn.preprocessing import LabelEncoder # 标签编码
import pandas as pd
# 矩阵运算
import numpy as np
2 数据加载
data = pd.read_csv('./car_price.csv')
data.shape # (205, 26)

3 去除无效数据
train_X = data.drop(['car_ID','CarName'],axis = 1)
train_X.shape # 205, 24
4 特征工程(将属性转换为数值)
# 将非数值特征转换为数值
le = LabelEncoder()
colums = ['fueltype','aspiration','doornumber','carbody','drivewheel','enginelocation','enginetype','cylindernumber','fuelsystem']
for column in colums:# 训练并将标签转换为归一化的代码train_X[column] = le.fit_transform(train_X[column])
train_X

5 归一化
# 规范化到[0,1] 空间
min_max_scaler = preprocessing.MinMaxScaler()
# MinMaxscaler( )将每个要素缩放到给定范围,怡合数据,然后进行转换
train_x = min_max_scaler.fit_transform(train_X)
train_x

6 聚类参数选择
6.1 显示所有系统字体
# 查找自己电脑的字体,从中选择
# 本电脑上,选择的STKaiti
from matplotlib.font_manager import FontManager
fm = FontManager()
[font.name for font in fm.ttflist]

6.2 字体设置
plt.rcParams['font.family'] = 'STKaiti'
plt.rcParams['font.size'] = 20
6.3 SSE(簇惯性)
sse =[]
ss = []
for k in range(2,11):kmeans = KMeans(n_clusters= k)kmeans.fit(train_x)sse.append(kmeans.inertia_)ss.append(silhouette_score(train_x,kmeans.predict(train_x)))plt.figure(figsize=(16,6))
x = range(2,11)
plt.subplot(1,2,1)
plt.plot(x,sse,'o-')
plt.xlabel('K')
plt.ylabel('SSE簇惯性')plt.subplot(1,2,2)
plt.plot(x,ss,'r*-')
plt.xlabel('K')
plt.ylabel('轮廓系数')
plt.savefig('./1-聚类簇数.png',dpi = 200)

6.4 聚类运算
kmeans = KMeans(n_clusters=8)
kmeans.fit(train_x)# 预测
predict_y = kmeans.predict(train_x)
predict_y

7 结果分析
7.1 结果合并
result = pd.concat((data,pd.DataFrame(predict_y)),axis =1)result.rename({0:u'聚类结果'},axis = 1,inplace = True)
result

# 分组运算
g1 = result.groupby(by = ['聚类结果','carbody'])[['price']].mean()
g1

g2 = g1.unstack() # 数据重塑
g2

g2.sort_values(by= ('price','sedan'))
7.2 低端轿车聚类结果
# 查看,类别是1的标准三厢车(具体根据分组运算结果确定)
cond = result.apply(lambda x : x['聚类结果'] == 4 and 'sedan' in x['carbody'] ,axis = 1)
columns = ['CarName','wheelbase','price','horsepower','carbody','fueltype','聚类结果']
# 价格降序排名
result[cond][columns].sort_values('price',ascending= False)
7.3 高端轿车聚类结果
# 根据条件(售价)筛选高端轿车(三厢车)
cond = result.apply(lambda x : x['聚类结果'] == 7 and 'sedan' in x['carbody'], axis =1)
columns = ['CarName','wheelbase','price','horsepower','carbody','fueltype','聚类结果']
# 价格降序排名
result[cond][columns].sort_values('price',ascending= False)

7.4 中端 SUV聚类结果
cond = result.apply(lambda x : x['聚类结果'] == 2 and 'wagon' in x['carbody'], axis =1)
columns = ['CarName','wheelbase','price','horsepower','carbody','fueltype','聚类结果']
# 价格降序排名
result[cond][columns].sort_values('price',ascending= False)

相关文章:
08- 汽车产品聚类分析综合项目 (机器学习聚类算法) (项目八)
找出性价比较高的车 LabelEncoder: python:sklearn标签编码(LabelEncoder) sklearn.preprocessing.LabelEncoder的使用:在训练模型之前,通常都要对数据进行一定得处理。将类别编号是一种常用的处理方法,比如把类别“电脑”,“手机…...
揭开苹果供应链,如何将其命运与中国深度捆绑
前 言 诺基亚在2007年时拥有9亿用户,在手机市场上占据主导地位,福布斯在当时以“谁能赶上手机之王?”为标题刊登了一篇关于该公司的报道,与此同时,苹果公司推出了iPhone系列产品。16年后,苹果公司以充足的…...
Mybatis 之useGeneratedKeys注意点
一.例子 Order.javapublic class Order {private Long id;private String serial; }orderMapper.xml<?xml version"1.0" encoding"UTF-8"?> <!DOCTYPE mapper PUBLIC "-//mybatis.org/DTD Mapper 3.0" "http://mybatis.org/dtd…...
数据结构---时间复杂度
专栏:数据结构 个人主页:HaiFan. 专栏简介:开学数据结构,接下来会慢慢坑新数据结构的内容!!!! 时间复杂度前言1.算法效率1.1如何衡量一个算法的好坏1.2算法的复杂度2.时间复杂度2.1大…...
如何保证集合是线程安全的 ConcurrentHashMap如何实现高效地线程安全?
第10讲 | 如何保证集合是线程安全的? ConcurrentHashMap如何实现高效地线程安全? 我在之前两讲介绍了 Java 集合框架的典型容器类,它们绝大部分都不是线程安全的,仅有的线程安全实现,比如 Vector、Stack,在性能方面也…...
C++对象模型和this指针
成员变量和成员函数分开存储:基本概念:在C中,类内的成员变量和成员函数分开存储只有非静态成员变量才属于类的对象上每个空对象都会有一个独一无二的内存地址,所以,空对象占用内存空间的大小为1代码实现:#i…...
kubernetes教程 --Pod调度
Pod调度 在默认情况下,一个Pod在哪个Node节点上运行,是由Scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的。但是在实际使用中,这并不满足的需求,因为很多情况下,我们想控制某些Pod到达某…...
功率放大器科普知识(晶体管功率放大器的注意事项)
虽然功率放大器是电子实验室的常用仪器,但是很多人对于它却没有清晰的认识,下面就让安泰电子来为大家介绍功率放大器的科普内容以及使用注意事项,希望大家可以对功率放大器有清晰的认识。功率放大器可以把输入信号的功率放大,以满…...
CentOS 7转化系统为阿里龙蜥Anolis OS 7
转载:原社区CentOS 7迁移Anolis OS 7迁移手册 一、注意事项 Anolis OS 7生态上和依赖管理上保持跟CentOS7.x兼容,一键式迁移脚本centos2anolis.py,实现CentOS7.x到Anolis OS 7的平滑迁移。 使用迁移脚本前需要注意如下事项: 迁…...
【快速复习】一文看懂 Mysql 核心存储 隔离级别 锁 MVCC 机制
一文看懂 Mysql 核心存储 & 隔离级别 & 锁 & MVCC 机制 Mysql InnoDB 引擎下核心存储 数据&索引存储 IBD 文件 mysql 实际存储采用 B 树结构。 B 树是一种多路搜索树,其搜索性能高于 B 树 所有叶节点在同一深度,保证搜索效率仅叶节…...
面试题----集合
概述 从上图可以看出,在Java 中除了以 Map 结尾的类之外, 其他类都实现了 Collection 接⼝。 并且,以 Map 结尾的类都实现了 Map 接⼝List,Set,Map List (对付顺序的好帮⼿): 存储的元素是有序的、可重复的。 Set (注重独⼀⽆⼆…...
XSS注入基础入门篇
XSS注入基础入门篇1.XSS基础概念2. XSS的分类以及示例2.1 反射型XSS2.1.1 示例1:dvwa low 级别的反射型XSS2.1.2 攻击流程2.2 DOM型XSS2.2.1 示例2:DOM型XSS注入1.环境部署2.基础版本3.进阶绕过2.3 存储型XSS2.3.1 示例1:dvwa low示例2.3.2 攻…...
刷题 - 数据结构(二)链表
1. 链表 1.1 题目:合并两个有序链表 链表的建立与插入:关键在于留出头部,创建迭代指针。 ListNode* head new ListNode; // 通过new 创建了一个数据类型为ListNode的数据 并把该数据的地址赋值给ListNodeListNode* p 0; // 再创建一个数据…...
用于隔离PWM的光耦合器选择和使用
光耦合器(或光隔离器)是一种将电路电隔离的器件,不仅在隔离方面非常出色,而且允许您连接到具有不同接地层或在不同电压电平下工作的电路。光耦合器具有“故障安全”功能,因为如果受到高于最大额定值的电压,…...
面试完阿里,字节,腾讯的测试岗,复盘以及面试总结
前段时间由于某些原因辞职了,最近一直在面试。面试这段时间,经历过不同业务类型的公司(电商、酒店出行、金融、新能源、银行),也遇到了很多不同类型的面试官。 参加完三家大厂的面试聊聊我对面试的一些看法࿰…...
分享一个外贸客户案例
春节期间一个外贸人收到了客户的回复,但因为自己的处理方式造成了一个又一个问题,我们可以从中学到一些技巧和知识。“上次意大利的客人询价后,一直没回复(中间有打过电话,对方说口语不行,我写过邮件跟进过…...
【Kubernetes】第二篇 - 购买阿里云 ECS 实例
一,前言 上一篇,简单介绍了 CI/CD 的概念以及 ECS 服务规划,搭建整套服务需要三台服务器,配置如下: ECS 配置启动服务说明2核4GJenkins Nexus Dockerci-server2核4GDocker Kubernetesk8s-master1核1GDocker Kube…...
数影周报:据传国内45亿条快递数据泄露,聆心智能完成Pre-A轮融资
本周看点:据传国内45亿条快递数据泄露;消息称微软解雇150 名云服务销售;消息称TikTok计划在欧洲再开两个数据中心;衣服长时间放购物车被淘宝客服嘲讽;聆心智能完成Pre-A轮融资......数据安全那些事据传国内45亿条快递数…...
Leetcode力扣秋招刷题路-0073
从0开始的秋招刷题路,记录下所刷每道题的题解,帮助自己回顾总结 73. 矩阵置零 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:mat…...
遥感数字图像处理
遥感数字图像处理 来源:慕课北京师范大学朱文泉老师的课程 遥感应用:遥感制图、信息提取 短期内了解知识结构–>有选择的剖析经典算法原理–>系统化知识结构、并尝试实践应用 跳出算法(尤其是数学公式) 关注原理及解决问…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...


