当前位置: 首页 > news >正文

机器学习深度学习——多层感知机

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——感知机
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

上一节已经简单讲解了感知机,并且用XOR函数来举例说明单层感知机的不足,在这里进行多层感知机的讲解。

多层感知机

  • 解决XOR
  • 隐藏层
    • 线性模型可能会出错
    • 在网络中加入隐藏层
    • 从线性到非线性
    • 通用近似定理
  • 激活函数
    • ReLU函数
    • sigmoid函数
    • tanh函数
  • 多类分类

解决XOR

在这里插入图片描述
如上图所示,分别利用黄线和蓝线来对输入特征进行分别,并用表格来进行表示:
在这里插入图片描述
这个表格就直接很容易的体现出了输入和输出的关系,很明显这不是单层感知机能够完成的,而是需要进行如下的过程:
在这里插入图片描述
显然,我们要从白圈得到输入的值,从而得知黄圈和蓝圈分别是什么符号再得到灰色的输出值。
简单来讲,这就是一个单隐藏层,也就是说输入和输出之间隐藏了一层运算,单隐藏图如下图:
在这里插入图片描述
其中,隐藏层的大小是超参数。隐藏层的相关内容将在后面详细介绍。

隐藏层

对于之前的线性回归模型,标签通过仿射变换以后,确实与我们的输入数据直接相关了,所以无需隐藏层。但是,仿射变换中的线性其实是一种太过于强的假设了。

线性模型可能会出错

线性模型意味着单调:任何特征的增大都会导致模型输出的增大或缩小(取决于对应的权重符号)。
然而我们能找出很多违反单调性的例子。例如,我们想要根据体温预测死亡率。对体温高于37摄氏度的人来说,温度越高风险越大。然而,对体温低于37摄氏度的人来说,温度越高风险就越低。
再比如,上一节中我们对猫狗图像进行分类,如果用线性模型,区分猫和狗的唯一要求变为了评估单个像素的强度。在一个倒置图像后依然保留类别的世界里,注定失败。
这是因为,任何像素的重要性都以复杂的方式取决于该像素的上下文(周围像素的值)。由于这会考虑到特征之间的相关交互作用,所以我们引入了隐藏层。

在网络中加入隐藏层

我们可以在网络中加入一个或多个隐藏层来克服线性模型的限制,使其可以处理更普遍的函数关系类型。要做到这一点,最简单的方法是将许多全连接层都堆叠到一起,每一层都输出到上面的层,直到生成最后的输出。
我们可以把前L-1层都看作是表示,把最后一层看作是线性预测器。这种架构就叫做多层感知机,缩写为MLP
在这里插入图片描述
如该图为一个单隐藏层的多层感知机,具有5个隐藏单元。输入层不涉及任何计算,因此使用此网络产生输出只需要实现隐藏层和输出层的计算。
因此,该MLP的层数为2,。注意,这两个层都是全连接的,每个输入都会影响隐藏层的每个神经元,而隐藏层中的每个神经元又会影响输出层中的每个神经元。

从线性到非线性

我们通过矩阵X表示n个样本的小批量,其中每个样本都具有d个输入特征。对于具有h个隐藏单元的单隐藏层多层感知机,用H表示隐藏层的输出,称为隐藏表示。我们用如下方式计算单隐藏层多层感知机的输出O:
H = X W ( 1 ) + b ( 1 ) O = H W ( 2 ) + b ( 2 ) H=XW^{(1)}+b^{(1)}\\ O=HW^{(2)}+b^{(2)} H=XW(1)+b(1)O=HW(2)+b(2)
其实,如果只是上面的式子,并没有改变线性模型的情况。我们试着合并一下单隐藏层,可得:
O = ( X W ( 1 ) + b ( 1 ) ) W ( 2 ) + b ( 2 ) = X W ( 1 ) W ( 2 ) + b ( 1 ) W ( 2 ) + b ( 2 ) O=(XW^{(1)}+b^{(1)})W^{(2)}+b^{(2)}=XW^{(1)}W^{(2)}+b^{(1)}W^{(2)}+b^{(2)} O=(XW(1)+b(1))W(2)+b(2)=XW(1)W(2)+b(1)W(2)+b(2)
上式其实也只有X是未知的,那么上式其实就可以等价于O=XW+b了。
因此,为了发挥出多层架构的潜力,我们需要引入激活函数σ。激活函数的输出称为活性值。一般来说,只要有了激活函数,就不可能再将我们的多层感知机退化成线性模型:
H = σ ( X W ( 1 ) + b ( 1 ) ) , O = H W ( 2 ) + b ( 2 ) H=\sigma(XW^{(1)}+b^{(1)}),\\ O=HW^{(2)}+b^{(2)} H=σ(XW(1)+b(1)),O=HW(2)+b(2)

通用近似定理

多层感知机可以通过隐藏神经元,捕捉到输入之间复杂的相互作用,这些神经元依赖于每个输入的值。
我们可以很容易地设计隐藏结点从而执行任意计算。例如在一对输入上进行基本逻辑操作,多层感知机是通用近似器。即使是网络只有一个隐藏层,给足足够的神经元和正确的权重,我们可以对任意函数建模。
虽然一个单隐藏层可以学习任何函数,但是不代表通过一个单隐藏层就可以解决所有问题,事实上通过更深的网络,可以更容易的逼近许多函数。

激活函数

前面已经讲过了激活函数的必要性,它是线性模型转换为非线性模型的关键。激活函数通过计算加权和并加上偏置来确定神经元是否应该被激活,它们将输入信号转换为输出的可微运算。大多数激活函数都是非线性的。

import torch
from d2l import torch as d2l

ReLU函数

实现简单且最受欢迎的激活函数,就是修正线性单元(ReLU),它提供了一种非常简单的非线性变化:
R e L U ( x ) = m a x ( x , 0 ) ReLU(x)=max(x,0) ReLU(x)=max(x,0)
通俗的说,ReLU函数将对应的活性值设为0,仅保留正元素并丢弃所有负元素。我们可以画出函数的曲线图:

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))
d2l.plt.show()

在这里插入图片描述
我们可以绘制ReLU函数的导数:

y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))
d2l.plt.show()

在这里插入图片描述
选用ReLU的原因:它求导表现的很好,要么让参数消失,要么让参数通过。这使得优化表现得更好,并且ReLU减轻了困扰以往神经网络的梯度消失问题。
而ReLU也有很多变体,如参数化ReLU函数,其添加了一个线性项,因此即使参数是负的,某些信息仍然可以通过:
p R e L U ( x ) = m a x ( 0 , x ) + α m i n ( 0 , x ) pReLU(x)=max(0,x)+αmin(0,x) pReLU(x)=max(0,x)+αmin(0,x)

sigmoid函数

sigmoid函数将输入变换为区间(0,1)上输出,因此通常称为挤压函数
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x)=\frac{1}{1+e^{-x}} sigmoid(x)=1+ex1
在这里插入图片描述

tanh函数

和sigmoid类型,双曲正切函数也是压缩区间,压缩到了(-1,1):
t a n h ( x ) = 1 − e − 2 x 1 + e − 2 x tanh(x)=\frac{1-e^{-2x}}{1+e^{-2x}} tanh(x)=1+e2x1e2x

多类分类

其实就是之前的softmax函数加了个隐藏层:
输入 x ∈ R n 隐藏层 W 1 ∈ R m × n , b 1 ∈ R m 输出层 W 2 ∈ R m × k , b 2 ∈ R k 输入x∈R^n\\ 隐藏层W_1∈R^{m×n},b_1∈R^m\\ 输出层W_2∈R^{m×k},b_2∈R^k\\ 输入xRn隐藏层W1Rm×n,b1Rm输出层W2Rm×k,b2Rk
那么可以得到:
h = σ ( W 1 x + b 1 ) o = W 2 T h + b 2 y = s o f t m a x ( o ) h=\sigma(W_1x+b_1)\\ o=W_2^Th+b_2\\ y=softmax(o) h=σ(W1x+b1)o=W2Th+b2y=softmax(o)
注意这里的o的表达式和之前写的不一样,上面只是给出个大概,而真正要进行运算的时候要满足矩阵乘法的原则:前面的列数等于后面的行数。

相关文章:

机器学习深度学习——多层感知机

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——感知机 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所帮助 上一节…...

Django模型将模型注释同步到数据库

1、安装django-comment-migrate库 pip install django-comment-migrate 2、将库注册到settings.py文件中 INSTALLED_APPS [...django_comment_migrate, # 表注释... ] 3、加注释 3.1、给模型(表)加注释 在模型的class Meta中编辑 verbose_name&…...

STM32 Flash学习(二)

STM32F1的官方固件库操作FLASH的几个常用函数。这些函数和定义分布在源文件stm32f1xx_hal_flash.c/stm32f1xx_hal_flash_ex.c以及头文件stm32f1xx_hal_flash.h/stm32f1xx_hal_flash_ex.h中。 锁定解函数 对FLASH进行写操作前必须先解锁,解锁操作:在FLA…...

kotlin获取泛型集合的类型信息

通过 reified 关键字和内联函数来实现 inline fun <reified T> getClassFromList(list: List<T>): Class<T> {return T::class.java }fun main() {val list listOf("Hello", "World")val clazz getClassFromList(list)println(clazz)…...

AQS源码解析

关于 AQS&#xff0c;网上已经有无数的文章阐述 AQS 的使用及其源码&#xff0c;所以多这么一篇文章也没啥所谓&#xff0c;还能总结一下研究过的源码。源码解析和某某的使用&#xff0c;大概是互联网上 Java 文章中写得最多的主题了。 AQS AQS 是 AbstractQueuedSynchronize…...

关于在VS2017中编译Qt项目遇到的问题

关于在VS2017中编译Qt项目遇到的问题 【QT】VS打开QT项目运行不成功 error MSB6006 “cmd.exe”已退出,代码为 2。如何在VS2017里部署的Qt Designer上编辑槽函数 【QT】VS打开QT项目运行不成功 error MSB6006 “cmd.exe”已退出,代码为 2。 链接 如何在VS2017里部署的Qt Design…...

Python web实战 | 使用 Flask 实现 Web Socket 聊天室

概要 今天我们学习如何使用 Python 实现 Web Socket&#xff0c;并实现一个实时聊天室的功能。本文的技术栈包括 Python、Flask、Socket.IO 和 HTML/CSS/JavaScript。 什么是 Web Socket&#xff1f; Web Socket 是一种在单个 TCP 连接上进行全双工通信的协议。它是 HTML5 中的…...

Android10 Recovery系列(一)隐藏recovery菜单项

一 、背景 起因是遇到了一个隐藏删除recovery菜单项的需求。在寻找解决问题的时候,我经历了找到源码位置,调试修改,生效,思考是否可拓展,优化修改,符合要求的整个过程,下面简单分享一下。如果不想立即实现效果或者只想看解决方案,可以直接看总结那一个部分 二 、准备…...

选好NAS网络储存解决方案,是安全储存的关键

随着网络信息的发展&#xff0c;NAS也越来越受到企业的关注&#xff0c;NAS网络存储除了提供简单的存储服务外&#xff0c;还可以提供更好的数据安全性、更方便的文件共享方式。但市面上的产品种类繁多&#xff0c;我们该如何选择合适的产品&#xff0c;通过企业云盘&#xff0…...

AnimateDiff论文解读-基于Stable Diffusion文生图模型生成动画

文章目录 1. 摘要2. 引言3. 算法3.1 Preliminaries3.2. Personalized Animation3.3 Motion Modeling Module 4. 实验5.限制6. 结论 论文&#xff1a; 《AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning》 github: https://g…...

centos7安装tomcat

安装tomcat 必须依赖 JDK 环境&#xff0c;一定要提前装好JDK保证可以使用 一、下载安装包 到官网下载 上传到linux 服务器 二、安装tomcat 创建tomcat 文件夹 mkdir -p /usr/local/tomcat设置文件夹权限 chmod 757 tomcat将安装包上传至 新建文件夹 解压安装包 tar zx…...

【C#教程】零基础从入门到精通

今天给大家分享一套零基础从入门到精通&#xff1a;.NetCore/C#视频教程&#xff1b;这是2022年最新整理的、590G的开发教程资料。课程涵盖了.Net各方面的知识&#xff0c;跟着这个教程学习&#xff0c;就足够了。 课程分类 1、C#从基础到精通教程&#xff1b; 2、Winform从…...

opencv rtsp 硬件解码

讨论使用opencv的reader 硬件解码的方案有太多种&#xff0c;如果使用ffmpeg硬件解码是最方便的&#xff0c;不方便的是把解码过后的GPU 拉到 CPU 上&#xff0c;再使用opencv的Mat 从cpu 上上载到gpu上&#xff0c;是不是多了两个过程&#xff0c;应该是直接从GPU mat 直接去…...

机器学习-Gradient Descent

机器学习(Gradient Descent) videopptblog 梯度下降(Gradient Descent) optimization problem: 损失函数最小化 假设本模型有两个参数&#x1d703;1和&#x1d703;2&#xff0c;随机取得初始值 求解偏微分&#xff0c;梯度下降对参数进行更新 Visualize: 确定梯度方向&…...

MySql003——SQL(结构化查询语言)基础知识

一、数据库的相关概念 DB&#xff1a;数据库&#xff08;Database&#xff09; 即存储数据的“仓库”&#xff0c;其本质是一个文件系统。它保存了一系列有组织的数据。DBMS&#xff1a;数据库管理系统&#xff08;Database Management System&#xff09; 是一种操纵和管理数…...

springCloud Eureka注册中心配置详解

1、创建一个springBoot项目 2、在springBoot项目中添加SpringCloud依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-dependencies</artifactId><version>2021.0.3</version><type>…...

gti 远程操作

目录 一. 分布式版本控制管理系统 1. 理解分布式版本控制管理系统 二. 创建远程仓库 ​编辑 ​编辑 三. 克隆远程仓库_HTTP 四. 克隆远程仓库_SSH 配置公钥 添加公钥 五. git 向远程仓库推送 六. 拉取远程仓库 七. 忽略特殊文件 八. 配置别名 一. 分布式版本控制管理…...

Ftrace

一、概述 Ftrace有剖析器和跟踪器。剖析器提供统计摘要&#xff0c;如激素胡和直方图&#xff1b;而跟踪器提供每一个事件的细节。 Ftrace剖析器列表&#xff1a; 剖析器描述function内核函数统计分析kprobe profiler启用的kprobe计数器uprobe profiler启用的uprobe计数器hi…...

Tomcat修改端口号

网上的教程都比较老&#xff0c;今天用tomcat9.0记录一下 conf文件夹下server.xml文件 刚开始改了打红叉的地方&#xff0c;发现没用&#xff0c;改了上面那行...

vue2企业级项目(一)

vue2企业级项目&#xff08;一&#xff09; 创建项目&#xff0c;并创建项目编译规范 1、node 版本 由于是vue2项目&#xff0c;所以 node 版本比较低。使用 12.18.3 左右即可 2、安装vue 安装指定版本的vue2 npm i -g vue2.7.10 npm i -g vue/cli4.4.63、编辑器规范 vsc…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...