AnimateDiff论文解读-基于Stable Diffusion文生图模型生成动画
文章目录
- 1. 摘要
- 2. 引言
- 3. 算法
- 3.1 Preliminaries
- 3.2. Personalized Animation
- 3.3 Motion Modeling Module
- 4. 实验
- 5.限制
- 6. 结论
论文: 《AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning》
github: https://github.com/guoyww/animatediff/
1. 摘要
随着文生图模型Stable Diffusion及个性化finetune方法:DreamBooth、LoRA发展,人们可以用较低成本生成自己所需的高质量图像,这导致对于图像动画的需求越来越多。本文作者提出一种框架,可将现有个性化文生图模型所生成图片运动起来。该方法内核为在模型中插入一个运动建模模块,训练后用于蒸馏合理的运动先验。一旦训练完成,所有基于同一个文生图模型的个性化版本都可变为文本驱动模型。作者在动画、真实图上验证,AnimateDiff生成视频比较平滑,同时保留域特性及输出多样性。
2. 引言
作者提出的AnimateDiff,可对于任意个性化文生图模型生成动图,收集每个个性化域对应视频进行finetune是不方便的,因此作者设计运动建模模块,在大规模视频上进行finetune,学习到运动先验。
3. 算法
AnimateDiff结构如图2所示,

3.1 Preliminaries
作者使用通用文生图模型SD,对于个性化图像生成领域,如果采集目标域数据进行finetune模型,成本大,DreamBooth通过设置稀有字符串作为目标域标志,同时增加原始模型生成图像进行训练,减少信息丢失;LoRA训练模型参数差值∆W,为降低计算量,作者将∆W解耦为两个低秩矩阵,只有transformer block中映射矩阵参与finetune。
3.2. Personalized Animation
Personalized Animation定义为:给出个性化文生图模型,比如DreamBooth或LoRA,通过少量训练成本或不训练即可驱动生成器,保留原始域信息及质量。
为达到上述目的,常规方案是扩展模型增加关注时间的结构,通过大量视频数据学习合理运动先验,但是个性化视频收集成本大,有限视频将导致源域信息丢失。
对此,作者选择训练泛化性运动建模模块,推理时将其插入文生图模型,作者实验验证发现,该模块可用于任何基于同一基础模型的文生图模型,因为几乎未改变基础模型特征空间,ControlNet也曾证明过。
3.3 Motion Modeling Module
网络扩展:
原始SD仅能用于处理图像数据,若要处理5D视频张量(batch × \times ×channels × \times ×frames × \times ×height × \times ×width),则需要扩展网络,作者将原模型中每个2D卷积及attention层转换到仅关注空间的伪3D层,将frame维度合并到batch维度。新引入的运动模块可在每个batch中跨帧执行,使得生成视频跨帧平滑,内容一致,细节如图3所示。

运动建模模块设计:
该模块主要用于高效交换跨帧信息,作者发现普通的时空transformer足够建模运动先验。其由几个self-attention在时空维执行,特行图z的空间维度height、width reshape到batch维度,得到长度frames的 b a t c h ∗ h e i g h t ∗ w i d t h batch*height*width batch∗height∗width的序列,该映射特征经过几个self-attention block,如式4,

使得该模块可以捕获帧序列同一位置之间时空依赖性;为扩大感受野,作者在U型扩散网路每个分辨率层级引入该模块;此外,self-attention中增加正弦位置编码,使得网络关注当前帧时空位置。
训练目标函数:
训练过程:采样视频数据,通过预训练编码器,编码到隐空间,经过运动模块扩展的扩散网络,将噪声隐向量及对应文本prompt作为输入,预测增加到隐向量上的噪声,如式5,
4. 实验
如图4,作者展示不同模型效果;

图5,作者比较AnimateDiff与Text2Video-Zero,帧与帧之间内容一致性,Text2Video-Zero内容缺少细粒度一致性。

消融实验:

表2作者比较3种不同扩散机制,可视化结果如图6,Schedule B达到两者均衡。

5.限制
作者发现个性化文生图模型数据域为非逼真图片,更容易生成失败,如图7,有明显伪影,不能生成合理运动,归因于训练视频与个性化模型之间存在较大分布差异。可通过收集目标域视频finetune解决。

6. 结论
作者提出AnimateDiff,可将大多数个性化文生图模型进行视频生成,基于简单设计的运动建模模块,在大量视频数据学习运动先验,插入个性化文生图模型用于生成自然合理的目标域动图。
相关文章:
AnimateDiff论文解读-基于Stable Diffusion文生图模型生成动画
文章目录 1. 摘要2. 引言3. 算法3.1 Preliminaries3.2. Personalized Animation3.3 Motion Modeling Module 4. 实验5.限制6. 结论 论文: 《AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning》 github: https://g…...
centos7安装tomcat
安装tomcat 必须依赖 JDK 环境,一定要提前装好JDK保证可以使用 一、下载安装包 到官网下载 上传到linux 服务器 二、安装tomcat 创建tomcat 文件夹 mkdir -p /usr/local/tomcat设置文件夹权限 chmod 757 tomcat将安装包上传至 新建文件夹 解压安装包 tar zx…...
【C#教程】零基础从入门到精通
今天给大家分享一套零基础从入门到精通:.NetCore/C#视频教程;这是2022年最新整理的、590G的开发教程资料。课程涵盖了.Net各方面的知识,跟着这个教程学习,就足够了。 课程分类 1、C#从基础到精通教程; 2、Winform从…...
opencv rtsp 硬件解码
讨论使用opencv的reader 硬件解码的方案有太多种,如果使用ffmpeg硬件解码是最方便的,不方便的是把解码过后的GPU 拉到 CPU 上,再使用opencv的Mat 从cpu 上上载到gpu上,是不是多了两个过程,应该是直接从GPU mat 直接去…...
机器学习-Gradient Descent
机器学习(Gradient Descent) videopptblog 梯度下降(Gradient Descent) optimization problem: 损失函数最小化 假设本模型有两个参数𝜃1和𝜃2,随机取得初始值 求解偏微分,梯度下降对参数进行更新 Visualize: 确定梯度方向&…...
MySql003——SQL(结构化查询语言)基础知识
一、数据库的相关概念 DB:数据库(Database) 即存储数据的“仓库”,其本质是一个文件系统。它保存了一系列有组织的数据。DBMS:数据库管理系统(Database Management System) 是一种操纵和管理数…...
springCloud Eureka注册中心配置详解
1、创建一个springBoot项目 2、在springBoot项目中添加SpringCloud依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-dependencies</artifactId><version>2021.0.3</version><type>…...
gti 远程操作
目录 一. 分布式版本控制管理系统 1. 理解分布式版本控制管理系统 二. 创建远程仓库 编辑 编辑 三. 克隆远程仓库_HTTP 四. 克隆远程仓库_SSH 配置公钥 添加公钥 五. git 向远程仓库推送 六. 拉取远程仓库 七. 忽略特殊文件 八. 配置别名 一. 分布式版本控制管理…...
Ftrace
一、概述 Ftrace有剖析器和跟踪器。剖析器提供统计摘要,如激素胡和直方图;而跟踪器提供每一个事件的细节。 Ftrace剖析器列表: 剖析器描述function内核函数统计分析kprobe profiler启用的kprobe计数器uprobe profiler启用的uprobe计数器hi…...
Tomcat修改端口号
网上的教程都比较老,今天用tomcat9.0记录一下 conf文件夹下server.xml文件 刚开始改了打红叉的地方,发现没用,改了上面那行...
vue2企业级项目(一)
vue2企业级项目(一) 创建项目,并创建项目编译规范 1、node 版本 由于是vue2项目,所以 node 版本比较低。使用 12.18.3 左右即可 2、安装vue 安装指定版本的vue2 npm i -g vue2.7.10 npm i -g vue/cli4.4.63、编辑器规范 vsc…...
【前端知识】React 基础巩固(三十八)——log、thunk、applyMiddleware中间件的核心代码
React 基础巩固(三十八)——log、thunk、applyMiddleware中间件的核心代码 一、打印日志-中间件核心代码 利用Monkey Patching,修改原有的程序逻辑,在调用dispatch的过程中,通过dispatchAndLog实现日志打印功能 // 打印日志-中间件核心代码…...
hive删除数据进行恢复
在实际开发或生产中,hive表如果被误删,如被truncate或是分区表的分区被误删了,只要在回收站的清空周期内,是可以恢复数据的,步骤如下: (1) 先找到被删除数据的存放目录,…...
二、前端高德地图、渲染标记(Marker)引入自定义icon,手动设置zoom
要实现这个效果,我们先看一下目前的页面展示: 左边有一个图例,我们可以方法缩小地图,右边是动态的marker标记,到时候肯定时候是后端将对应的颜色标识、文字展示、坐标点给咱们返回、我们肯定可以拿到一个list…...
UDF和UDAF、UDTF的区别
UDF UDF(User-defined functions)用户自定义函数,简单说就是输入一行输出一行的自定义算子。 是大多数 SQL 环境的关键特性,用于扩展系统的内置功能。(一对一) UDAF UDAF(User Defined Aggregat…...
小研究 - 浅析 JVM 中 GC 回收算法与垃圾收集器
本文主要介绍了JVM虚拟机中非常重要的两个部分,GC 回收算法和垃圾收集器。从可回收对象的标记开始,详细介绍 了四个主流的GC算法,详细总结了各自的算法思路及优缺点, 提出了何种情况下应该通常选用哪种算法。 目录 1 标记可回收对…...
Flowable-服务-骆驼任务
目录 定义图形标记XML内容Flowable与Camel集成使用示例设计Came路由代码 定义 Camel 任务不是 BPMN 2.0 规范定义的官方任务,在 Flowable 中,Camel 任务是作为一种特殊的服务 任务来实现的。主要做路由工作的。 图形标记 由于 Camel 任务不是 BPMN 2.…...
用html+javascript打造公文一键排版系统9:主送机关排版
一、主送机关的规定 公文一般在标题和正文之间还有主送机关,相关规定为: 主送机关 编排于标题下空一行位置,居左顶格,回行时仍顶格,最后一个机关名称后标全角冒号。如主送机关名称过多导致公文首页不能显示正文时&…...
SpringBoot 集成 EasyExcel 3.x 优雅实现 Excel 导入导出
介绍 EasyExcel 是一个基于 Java 的、快速、简洁、解决大文件内存溢出的 Excel 处理工具。它能让你在不用考虑性能、内存的等因素的情况下,快速完成 Excel 的读、写等功能。 EasyExcel文档地址: https://easyexcel.opensource.alibaba.com/ 快速开始 …...
RT1052 的四定时器
文章目录 1 Quad Timer,简称:QTMR2 单个通道的框图3 QTMR配置3.1 QTMR1 时钟使能。3.2 初始化 QTMR1。3.2.1 QTMR_Init 3.3 设置 QTMR1 通道 0 的定时周期。3.3.1QTMR_SetTimerPeriod 3.4 使能 QTMR1 通道 0 的比较中断。3.4.1 QTMR_EnableInterrupts 3.…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
Xshell远程连接Kali(默认 | 私钥)Note版
前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
