使用 OpenCV 进行图像模糊度检测(拉普拉斯方差方法)
写在前面
- 工作中遇到,简单整理
- 人脸识别中,对于模糊程度较高的图像数据,识别率低,错误率高。
- 虽然使用
AdaFace
模型,对低质量人脸
表现尤为突出。 - 但是还是需要对 模糊程度高的图像进行丢弃处理
- 当前通过
阈值分类
,符合要求的进行特性提取 - 实际应用中,可以维护一个
质量分数
- 比如由
模糊程度
,图片字节大小
,人脸姿态评估(欧拉角)
等 算出一个综合质量分,用于人脸归类/聚类 - 理解不足小伙伴帮忙指正
对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》
模糊度检测算法来自 :https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
具体实现方式小伙伴可直接看原文
这种方法起作用的原因是由于
拉普拉斯算子
本身的定义,它用于测量图像的二阶导数。拉普拉斯突出显示包含快速强度变化的图像区域,与 Sobel 和 Scharr 算子非常相似。而且,就像这些运算符一样,拉普拉斯通常用于边缘检测
。这里的假设是,如果图像包含高方差,则存在广泛的响应,包括边缘类和非边缘类,代表正常的焦点图像。但是,如果方差非常低,则响应的分布很小,表明图像中的边缘非常小
。众所周知,图像越模糊,边缘就越少
下面为原文的 Demo
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@File : detect_blur.py
@Time : 2023/07/24 22:57:51
@Author : Li Ruilong
@Version : 1.0
@Contact : liruilonger@gmail.com
@Desc : 图片模糊度检测
"""# here put the import lib# import the necessary packages
from imutils import paths
import cv2
import osdef variance_of_laplacian(image):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# compute the Laplacian of the image and then return the focus# measure, which is simply the variance of the Laplacianreturn cv2.Laplacian(gray, cv2.CV_64F).var()# loop over the input images
for imagePath in paths.list_images("./res/mh"):# load the image, convert it to grayscale, and compute the# focus measure of the image using the Variance of Laplacian# methodimage = cv2.imread(imagePath)fm = variance_of_laplacian(image)text = "Not Blurry"print(fm)# if the focus measure is less than the supplied threshold,# then the image should be considered "blurry"if fm < 100:text = "Blurry"# show the imagefile_name = os.path.basename(imagePath)cv2.imwrite(str(fm)+'__' + file_name , image)
核心代码:
cv2.Laplacian(gray, cv2.CV_64F).var()
如果为 Image.image
,可以使用下的方式
def variance_of_laplacian(image):"""@Time : 2023/07/25 01:57:44@Author : liruilonger@gmail.com@Version : 1.0@Desc : 模糊度检测Args:Returns:void"""numpy_image = np.array(image)cv2_image = cv2.cvtColor(numpy_image, cv2.COLOR_RGB2BGR)gray = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2GRAY)# compute the Laplacian of the image and then return the focus# measure, which is simply the variance of the Laplacianreturn cv2.Laplacian(gray, cv2.CV_64F).var()
实际测试中发现,阈值设置为 100 相对来说比较合适,当然如何数据集很大,可以考虑 提高阈值,当模糊度大于 1000 时,一般为较清晰图片,低于 100 时,图片模糊严重
下面为对一组较模糊数据进行检测
最后一个图像,模糊度为 667 ,其他为 200 以内
(AdaFace) C:\Users\liruilong\Documents\GitHub\AdaFace_demo>python detect_blur.py
130.99918569797578
97.54477372302556
70.30346984100659
95.56028915335366
77.70006004883219
107.2065965492792
93.43007114319839
75.44132565995248
127.50238903320515
98.11810838476116
69.49917570127641
132.46578324273048
99.2095025510204
92.97255942246558
93.33812691062155
667.4883318795927
博文部分内容参考
© 文中涉及参考链接内容版权归原作者所有,如有侵权请告知 😃
https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/
© 2018-2023 liruilonger@gmail.com, All rights reserved. 保持署名-非商用-相同方式共享(CC BY-NC-SA 4.0)
相关文章:

使用 OpenCV 进行图像模糊度检测(拉普拉斯方差方法)
写在前面 工作中遇到,简单整理人脸识别中,对于模糊程度较高的图像数据,识别率低,错误率高。虽然使用 AdaFace 模型,对低质量人脸表现尤为突出。但是还是需要对 模糊程度高的图像进行丢弃处理当前通过阈值分类ÿ…...

神经网络简单介绍
人工神经网络(artififial neural network) 简称神经网络,它是一种模仿生物神经网络结构和功能的非线性数学模型。 神经网络通过输入层接受原始特征信息,再通过隐藏层进行特征信息的加工和提取,最后通过输出层输出结果。 根据需要神经网络可以…...

16位S912ZVML32F3MKH、S912ZVML31F1WKF、S912ZVML31F1MKH混合信号MCU,适用于汽车和工业电机控制应用。
S12 MagniV微控制器是易于使用且高度集成的混合信号MCU,非常适合用于汽车和工业应用。S12 MagniV MCU提供单芯片解决方案,是基于成熟的S12技术的完整系统级封装 (SiP) 解决方案,在整个产品组合内软件和工具都兼容。 S12 MagniV系统级封装 (S…...

力扣 509. 斐波那契数
题目来源:https://leetcode.cn/problems/fibonacci-number/description/ C题解1:根据题意,直接用递归函数。 class Solution { public:int fib(int n) {if(n 0) return 0;else if(n 1) return 1;else return(fib(n-1) fib(n-2));} }; C题…...

使用 DolphinDB TopN 函数探索高效的Alpha因子
DolphinDB 已经有非常多的窗口计算函数,例如 m 系列的滑动窗口计算,cum 系列累计窗口计算,tm 系列的的时间窗口滑动计算。但是所有这类函数都是对窗口内的所有记录进行指标计算,难免包含很多噪音。 DolphinDB 的金融领域用户反馈…...

超聚变和厦门大学助力兴业银行构建智慧金融隐私计算平台,助力信用卡业务精准营销...
兴业银行与超聚变数字技术有限公司、厦门大学携手,发挥产学研用一体化整体优势联合建设,厦门大学提供先进的算法模型及科研能力,超聚变提供产品解决方案及工程能力,兴业银行提供金融实践能力,三方发挥各自领域优势&…...

docker 的compose安装
1. Docker Compose 环境安装 Docker Compose 是 Docker 的独立产品,因此需要安装 Docker 之后在单独安装 Docker Compose docker compose 实现单机容器集群编排管理(使用一个模板文件定义多个应用容器的启动参数和依赖关系,并使用docker co…...

JavaScript---事件对象event
获取事件对象: 事件对象:是个对象,这个对象里有事件触发时的相关信息,在事件绑定的回调函数的第一个参数就是事件对象,一般命名为event、ev、e eg: 元素.addEventListener(click,function (e){}) 部分常用属性&…...

Day 15 C++对象模型和this指针
目录 C对象模型 类内的成员变量和成员函数分开存储 总结 this指针 概念 示例 用途 当形参和成员变量同名时 在非静态成员函数中,如果希望返回对象本身 例子 空指针访问成员函数 示例 const修饰成员函数 常函数(const member function&…...

HarmonyOS/OpenHarmony元服务开发-卡片生命周期管理
创建ArkTS卡片,需实现FormExtensionAbility生命周期接口。 1.在EntryFormAbility.ts中,导入相关模块。 import formInfo from ohos.app.form.formInfo; import formBindingData from ohos.app.form.formBindingData; import FormExtensionAbility from …...

软件工程01
软件工程原则: 开闭原则: open closed principle : 对扩展开放,对修改关闭,,,只让扩展,不让修改,用新增的类去替代修改的类 扩展之后,代码不用改变ÿ…...

UML/SysML建模工具更新(2023.7)(1-5)有国产工具
DDD领域驱动设计批评文集 欢迎加入“软件方法建模师”群 《软件方法》各章合集 最近一段时间更新的工具有: 工具最新版本:Visual Paradigm 17.1 更新时间:2023年7月11日 工具简介 很用心的建模工具。支持编写用例规约。支持文本分析和C…...

Mac plist文件
macOS、iOS、iPadOS的应用程序都可能会有plist配置文件,他是苹果系列操作系统特有的配置文件。 plist的本质是个xml格式的文本文件,英文全称是property list,文件后缀使用.plist。 对于普通用户来说,基本不用管plist文件是什么&…...

基于Java+SpringBoot+vue前后端分离校园周边美食探索分享平台设计实现
博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专…...

【openwrt】package介绍
openwrt package介绍 OpenWrt 构建系统主要围绕package的概念展开。不管是什么软件,几乎都对应一个package。 这几乎适用于系统中的所有内容:HOST工具、交叉编译工具链、Linux 内核、内核mod、根文件系统和上层的应用软件。 一个 OpenWrt package本质上…...

vue 封装一个鼠标拖动选择时间段功能
<template><div class"timeRange"><div class"calendar"><table><thead><tr><th rowspan"6" class"weekRow"><b>周/时间</b></th><th colspan"24"><…...

ubuntu22.0安装Barrier局域网共享鼠标键盘
ubuntu22.0安装Barrier局域网共享鼠标键盘 参考网站安装步骤客户端一直开启中解决 参考网站 https://idroot.us/install-barrier-ubuntu-22-04/ 安装步骤 sudo apt update sudo apt upgrade sudo apt install wget apt-transport-https gnupg2 software-properties-common s…...

ffmpeg常用功能博客导航
FFmpeg 是一个处理视频和音频内容的开源工具库,可以实现编码、解码、转码、流媒体和后处理等服务。 推荐博客: 常见命令和使用案例 用ffmpeg转mov为mp4格式 FFmpeg 常用命令 FFmpeg 常用命令编辑音/视频(转换格式、压缩、裁剪、截图、切分合…...

shopee,lazada,etsy店群如何高效安全的管理
对于电商卖家来说,要经营多个店铺,管理多个账号是非常常见的操作。为了避免账号关联被平台识别出来,需要使用防关联的浏览器来进行操作 1、支持多平台 支持同时管理多个电商平台店铺,Shopee、Lazada、etsy、poshmark、vinted等&…...

【计算复杂性理论】证明复杂性(八):命题鸽巢原理(Propositional Pigeonhole Principle)的指数级归结下界
往期文章: 【计算复杂性理论】证明复杂性(Proof Complexity)(一):简介 【计算复杂性理论】证明复杂性(二):归结(Resolution)与扩展归结ÿ…...

使用DataX实现mysql与hive数据互相导入导出
一、概论 1.1 什么是DataX DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。 1.2 DataX 的设计 为了解决异构数据源同步问题…...

语音转录成文本:AI Transcription for mac
AI Transcription是一种人工智能技术,它可以将音频和视频文件转换成文本格式。这种技术可以帮助用户快速地将大量的音频和视频内容转换成文本格式,方便用户进行文本分析、搜索和编辑等操作。 以下是AI Transcription的几个特点: 高效性。AI …...

[nlp] TF-IDF算法介绍
(1)TF是词频(Term Frequency) 词频是文档中词出现的概率。 (2) IDF是逆向文件频率(Inverse Document Frequency) 包含词条的文档越少,IDF越大。...

一些感想,写在8月之前
最近换工作了,离开了一个奋斗了4年多的公司,现在在新公司,还在培训中,不那么忙了,就写写最近的想法吧。 因为最近一直在研究框架和搭项目框架,所以就想把一些工作上的过程记录下来,以备不时之需…...

推动数字经济高质量发展需破解三大挑战
随着信息技术的飞速发展,数字经济已成为全球经济发展的重要驱动力。数字经济以其高效、便捷、创新的特点,深刻改变着传统产业和商业模式,为经济发展带来新的活力和动力。然而,要实现数字经济的高质量发展,仍然面临着三…...

Pycharm工具Python开发自动添加注释(详细)
方法自动添加参数注释 定义了一个函数,在函数下面敲入了三个双引号后,enter回车并没有自动出现注释,如图: 解决办法 Pycharm中依次打开File —> Settings —> Tools —> Python Integrated Tools,如图&…...

RUST 有哪些整型?
在Rust中,有以下几种整型数据类型: i8 :有符号8位整型,取值范围为-128到127。u8 :无符号8位整型,取值范围为0到255。i16 :有符号16位整型,取值范围为-32768到32767。u16 ࿱…...

【Python 实战】---- 批量识别图片中的文字,存入excel中【使用百度的通用文字识别】
分析 1. 获取信息图片示例 2. 运行实例 3. 运行结果 4. 各个文件的位置 实现 1. 需求分析 识别图片中的文字【采用百度的通用文字识别】;文字筛选,按照分类获取对应的文本;采用 openpyxl 实现将数据存入 excel 中。2. 获取 access_token 获取本地缓存的...

探索前端图片如何携带token进行验证
前言 图片在前端开发中扮演了重要的角色,它们不仅仅是美观的元素,还可以传递信息和激发用户的兴趣。随着应用场景的增多,前端开发人员就需要在图片加载过程中携带验证的信息。如 token,用于身份验证、权限控制等方面。通过在图片的…...

飞桨AI Studio可以玩多模态了?MiniGPT4实战演练!
MiniGPT4是基于GPT3的改进版本,它的参数量比GPT3少了一个数量级,但是在多项自然语言处理任务上的表现却不逊于GPT3。项目作者以MiniGPT4-7B作为实战演练项目。 创作者:衍哲 体验链接: https://aistudio.baidu.com/aistudio/proj…...