当前位置: 首页 > news >正文

Hadoop学习指南:探索大数据时代的重要组成——Hadoop概述

前言

在当今大数据时代,处理海量数据成为了一项关键任务。Hadoop作为一种开源的分布式计算框架,为大规模数据处理和存储提供了强大的解决方案。本文将介绍Hadoop的组成和其在大数据处理中的重要作用,让我们一同踏上学习Hadoop的旅程。

Hadoop概述

Hadoop 是什么

1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
2)主要解决,海量数据的存储和海量数据的分析计算问题。
3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。
在这里插入图片描述

Hadoop 三大发行版本(了解)

Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。
Apache 版本最原始(最基础)的版本,对于入门学习最好。2006
Cloudera 内部集成了很多大数据框架,对应产品CDH。2008
Hortonworks 文档较好,对应产品HDP。2011
Hortonworks 现在已经被Cloudera 公司收购,推出新的品牌CDP。
在这里插入图片描述

Apache Hadoop

官网地址
下载地址:https://hadoop.apache.org/releases.html

Cloudera Hadoop

官网地址:https://www.cloudera.com/downloads/cdh
下载地址
(1)2008 年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的
商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009 年 Hadoop 的创始人Doug Cutting 也加盟 Cloudera 公司。Cloudera 产品主
要为CDH,Cloudera Manager,Cloudera Support
(3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安
全性,稳定性上有所增强。Cloudera的标价为每年每个节点10000美元。
(4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一
个Hadoop集群,并对集群的节点及服务进行实时监控。

Hortonworks Hadoop

官网地址
下载地址:https://hortonworks.com/downloads/#data-platform

(1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。
(2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述
工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码。
(3)Hortonworks 的主打产品是Hortonworks Data Platform(HDP),也同样是100%开
源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。
(4)2018年Hortonworks 目前已经被Cloudera公司收购。

Hadoop 优势(4 高)

1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元
素或存储出现故障,也不会导致数据的丢失。
在这里插入图片描述

2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
在这里插入图片描述

3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处
理速度。
在这里插入图片描述

4)高容错性:能够自动将失败的任务重新分配。
在这里插入图片描述

Hadoop 组成(面试重点)

在这里插入图片描述

HDFS 架构概述

Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统。

  • 1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、
    文件权限),以及每个文件的块列表和块所在的DataNode等
  • 2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
  • 3)Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份。

YARN 架构概述

Yet Another Resource Negotiator 简称 YARN ,另一种资源协调者,是 Hadoop 的资源管理器。

  • 1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大
  • 2)NodeManager(NM):单个节点服务器资源老大
  • 3)ApplicationMaster(AM):单个任务运行的老大
  • 4)Container:容器,相当一台独立的服务器,里面封装了任务运行所需要的资源,如内存、CPU、磁盘、网络等

说明1:客户端可以有多个

说明2:集群上可以运行多个ApplicationMaster

说明3:每个NodeManager上可以有多个Container

MapReduce 架构概述

MapReduce 将计算过程分为两个阶段:Map和Reduce
1)Map阶段并行处理输入数据
2)Reduce 阶段对Map结果进行汇总

HDFS、YARN、MapReduce三者关系

在这里插入图片描述

大数据技术生态体系

在这里插入图片描述
图中涉及的技术名词解释如下:
视频、ppt等(非结构化数据)
数据来源层
1)Sqoop:Sqoop 是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySQL)
间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进
到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2)Flume:Flume 是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,
Flume 支持在日志系统中定制各类数据发送方,用于收集数据;
3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统;
4)Spark:Spark 是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数
据进行计算。
5)Flink:Flink 是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。
6)Oozie:Oozie 是一个管理Hadoop作业(job)的工作流程调度管理系统。
7)Hbase:HBase 是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,
它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张
数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运
行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开
发专门的MapReduce应用,十分适合数据仓库的统计分析。
9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、
名字服务、分布式同步、组服务等。

推荐系统框架图

在这里插入图片描述

总结:

Hadoop是大数据时代的重要组成部分,其分布式文件系统HDFS和分布式计算框架MapReduce构成了Hadoop的核心。Hadoop的出现为大规模数据处理和存储带来了新的解决方案,其高可扩展性、容错性和成本效益成为吸引用户的重要特点。

今天我们以了解和认识Hadoop为主,充分熟悉它的组成和细节,帮助我们更好的去学习它。

题外话

我整理了一些资源,如果你也对Python和大数据感兴趣,关注下方公众号免费提取资料。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

Hadoop学习指南:探索大数据时代的重要组成——Hadoop概述

前言 在当今大数据时代,处理海量数据成为了一项关键任务。Hadoop作为一种开源的分布式计算框架,为大规模数据处理和存储提供了强大的解决方案。本文将介绍Hadoop的组成和其在大数据处理中的重要作用,让我们一同踏上学习Hadoop的旅程。 Hado…...

Java实现简单小画板

Java制作简单画板,包括两个类,一个主要画板类Drawpad,一个画板监听器DrawListener类。 1、Drawpad类,包括画板,画板功能设计,保存图片等 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2…...

B078-项目实战--支付模块 领养订单支付流程

目录 支付模块需求分析表设计支付单表支付宝账号信息表-商家账号微信支付账号信息表-商家账号银行账号表-商家资金账号表支付流水表 流程分析支付基础模块继承加密算法沙箱环境准备支付宝支付-流程分析根据demo封装工具类导入依赖AlipayConfigAlipayInfoAlipayUtil 内网穿透 领…...

[css]margin-top不起作用问题(外边距合并)

在初学css时&#xff0c;会遇到突然间margin-top不起作用的情况。如下面&#xff1a; 情况一&#xff1a; 代码&#xff1a; <html> <head><style type"text/css"> * {margin:0;padding:0;border:0; }#outer {width:300px;height:300px;backgroun…...

Vue2基础八、插槽

零、文章目录 Vue2基础八、插槽 1、插槽 &#xff08;1&#xff09;默认插槽 作用&#xff1a;让组件内部的一些 结构 支持 自定义需求: 将需要多次显示的对话框, 封装成一个组件问题&#xff1a;组件的内容部分&#xff0c;不希望写死&#xff0c;希望能使用的时候自定义。…...

自然语言处理从入门到应用——LangChain:提示(Prompts)-[提示模板:连接到特征存储]

分类目录&#xff1a;《自然语言处理从入门到应用》总目录 特征存储是传统机器学习中的一个概念&#xff0c;它确保输入模型的数据是最新和相关的。在考虑将LLM应用程序投入生产时&#xff0c;这个概念非常重要。为了个性化LLM应用程序&#xff0c;我们可能希望将LLM与特定用户…...

jenkins自定义邮件发送人姓名

jenkins发送邮件的时候发送人姓名默认的&#xff0c;如果要自定义发件人姓名&#xff0c;只需要修改如下信息即可&#xff1a; 系统管理-system-Jenkins Location下的系统管理员邮件地址 格式为&#xff1a;自定义姓名<邮件地址>...

SolidWorks二次开发---简单的连接solidworks

创建一个.net Framework的应用&#xff0c;正常4.0以上就可以了。 打开nuget包管理 在里面搜索paine 在版中选择对应的solidworks年份开头的&#xff0c;进行安装。 安装完之后 : 同时选中下面两个dll,把嵌入操作类型改为false 然后在按钮的单击事件中输入: Connect.Crea…...

docker 安装 active Mq

在安装完Docker的机器上&#xff0c;安装activeMQ。 拉取镜像&#xff1a; docker pull webcenter/activemq 查看镜像&#xff1a; docker images Docker运行ActiveMQ镜像 docker run --name activemq -d -p 8161:8161 -p 61616:61616 --privilegedtrue --restartalways …...

【Linux】TCP协议

​&#x1f320; 作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《学会Linux》 &#x1f387; 座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录 &#x1f449;TCP协议&…...

DevOps系列文章之 自动化测试大全(单测和集成测试)

自动化测试业界主流工具 核心目标&#xff1a; 主要是功能测试和覆盖率测试 业界常用主流工具 GoogleTest GoogleTest是一个跨平台的(Liunx、Mac OS X、Windows 、Cygwin 、Windows CE and Symbian ) C单元测试框架&#xff0c;由google公司发布&#xff0c;为在不同平台上为编…...

Android启动速度优化

本节主要内容&#xff1a;了解APP启动流程、启动状态、查看启动时间、CPU Profile定位启动耗时代码、StrictMode严苛模式检测不合理写法、解决启动黑白屏问题。 一、APP启动流程 ①用户点击桌面App图标&#xff0c;Launcher进程采用Binder IPC向system_server进程发起startAc…...

linux 日志 系统安全日志 web日志

web日志 LINUX日志系统之WEB日志&#xff08;一&#xff09;_dracut.log_麻子来了的博客-CSDN博客 系统安全日志 Linux系统安全日志详解_sinolover的博客-CSDN博客 wtmp和utmp文件都是二进制文件&#xff0c;需使用who、w、users、last和ac来操作这两个文件。 who /var/lo…...

SpringBoot 整合 MongoDB 连接 阿里云MongoDB

注&#xff1a;spring-boot-starter-data-mongodb 2.7.5&#xff1b;jdk 1.8 阿里云MongoDB是副本集实例的 在网上查找了一番&#xff0c;大多数都是教连接本地mongodb或者linux上的mongodb 阿里云上有java版连接教程&#xff0c;但它不是SpringBoot方法配置的&#xff0c;是手…...

Debeizum 增量快照

在Debeizum1.6版本发布之后&#xff0c;成功推出了Incremental Snapshot&#xff08;增量快照&#xff09;的功能&#xff0c;同时取代了原有的实验性的Parallel Snapshot&#xff08;并行快照&#xff09;。在本篇博客中&#xff0c;我将介绍全新快照方式的原理&#xff0c;以…...

windows下安装composer

安装Php 教程 下载composer 官网 中文网站 exe下载地址 下载好exe 双击运行 找到php.ini注释一行代码 测试 composer -v说明安装成功 修改源 执行以下命令即可修改 composer config -g repo.packagist composer https://packagist.phpcomposer.com # 查看配置…...

企业游学进华秋,助力电子产业创新与发展

近日&#xff0c;淘IC企业游学活动&#xff0c;携20多位电子行业的企业家&#xff0c;走进了深圳华秋电子有限公司&#xff08;以下简称“华秋”&#xff09;&#xff0c;进行交流学习、供需对接。华秋董事长兼CEO陈遂佰对华秋的发展历程、业务版块、产业布局等做了详尽的介绍&…...

玩转Tomcat:从安装到部署

文章目录 一、什么是 Tomcat二、Tomcat 的安装与使用2.1 下载安装2.2 目录结构2.3 启动 Tomcat 三、部署程序到 Tomcat3.1 Windows环境3.2 Linux环境 一、什么是 Tomcat 一看到 Tomcat&#xff0c;我们一般会想到什么&#xff1f;没错&#xff0c;就是他&#xff0c;童年的回忆…...

吃透《西瓜书》第四章 决策树定义与构造、ID3决策树、C4.5决策树、CART决策树

目录 一、基本概念 1.1 什么是信息熵&#xff1f; 1.2 决策树的定义与构造 二、决策树算法 2.1 ID3 决策树 2.2 C4.5 决策树 2.3 CART 决策树 一、基本概念 1.1 什么是信息熵&#xff1f; 信息熵: 熵是度量样本集合纯度最常用的一种指标&#xff0c;代表一个系统中蕴…...

复现宏景eHR存在任意文件上传漏洞(0day)

目录 一、漏洞描述 二、影响版本 三、资产测绘 四、漏洞复现 一、漏洞描述 北京宏景世纪软件股份有限公司(简称“宏景软件”)自成立以来始终专注于国有企事业单位人力与人才管理数智化(数字化、智能化)产品的研发和应用推广,是中国国有企事业单位人力与人才管理数智…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...

基于单片机的宠物屋智能系统设计与实现(论文+源码)

本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢&#xff0c;连接红外测温传感器&#xff0c;可实时精准捕捉宠物体温变化&#xff0c;以便及时发现健康异常&#xff1b;水位检测传感器时刻监测饮用水余量&#xff0c;防止宠物…...