Excel透视表与python实现
目录
一、Excel透视表
1、源数据
2、数据总分析
3、数据top分析
二、python实现
1、第一张表演示
2、第二张表演示
一、Excel透视表
1、源数据
1)四个类目,每类50条数据

2)数据内容

2、数据总分析

1)选择要分析的字段,左侧为要对其进行汇总的数据,右侧为要汇总的具体值项

2)值字段设置
值汇总方式:数据计算方式
值显示方式:数据的百分比
数字格式:数字的表示方式(如小数点个数等)

3、数据top分析

1)按照近一个销售额对每个品类的top5进行分析
依据 “求和项:近一个月销售额” 对ID的top5进行选择


二、python实现
1、第一张表演示
import pandas as pd
import numpy as np
#读取原始文件
file=pd.read_excel('F:\Excel\\透视表.xlsx',sheet_name='销售源数据')
#对数据汇总做成透视表 第一张表
data1=file.pivot_table(index=['品类'],values=['近一个月销售额','近一个月销量','团购价'],aggfunc=[np.sum,np.mean]).reset_index()
data11=pd.DataFrame(data1.values[:,[0,2,3,6]],columns=['品类','求和项:近一个月销售额','求和项:近一个月销量','平均值项:团购价']).sort_values('求和项:近一个月销售额',ascending=False).reset_index(drop=True)
data11['求和项:近一个月销售额']=data11['求和项:近一个月销售额'].astype(float).map(lambda x:'{:.1f}'.format(x))
data11['平均值项:团购价']=data11['平均值项:团购价'].astype(float).map(lambda x:'{:.1f}'.format(x))
data11

2、第二张表演示
#第二张表
data2=file.pivot_table(index=['品类','ID'],values=['近一个月销售额','近一个月销量','团购价'],aggfunc=[np.sum,np.mean]).reset_index()
data22=pd.DataFrame(data2.values[:,[0,1,3,4,5]],columns=['品类','ID','求和项:近一个月销售额','求和项:近一个月销量','平均值项:团购价'])
#按照品类选择出销售额最高的ID
data22[['求和项:近一个月销售额','求和项:近一个月销量','平均值项:团购价']]=data22[['求和项:近一个月销售额','求和项:近一个月销量','平均值项:团购价']].astype(float)
#建立一张新表进行拼接
data24=pd.DataFrame()
for i in data11['品类'].to_list():data23=data22.loc[data22[data22.品类==i].index,:].nlargest(5,'求和项:近一个月销售额')data24=pd.concat([data24,data23],axis=0)
data24['求和项:近一个月销售额']=data24['求和项:近一个月销售额'].astype(float).map(lambda x:'{:.1f}'.format(x))
data24['平均值项:团购价']=data24['平均值项:团购价'].astype(float).map(lambda x:'{:.1f}'.format(x))
data24

相关文章:
Excel透视表与python实现
目录 一、Excel透视表 1、源数据 2、数据总分析 3、数据top分析 二、python实现 1、第一张表演示 2、第二张表演示 一、Excel透视表 1、源数据 1)四个类目,每类50条数据 2)数据内容 2、数据总分析 1)选择要分析的字段&…...
二级制部署kubernetes(1.20)
😘作者简介:一名运维工作人员。 👊宣言:人生就是B(birth)和D(death)之间的C(choise),做好每一个选择。 🙏创作不易,动动小…...
云曦暑期学习第二周——文件上传漏洞
1.文件上传 1.1原理 一些web应用程序中允许上传图片、视频、头像和许多其他类型的文件到服务器中。 文件上传漏洞就是利用服务端代码对文件上传路径变量过滤不严格将可执行的文件上传到一个到服务器中 ,再通过URL去访问以执行恶意代码。 1.2为什么存在文件上传漏…...
软件测试右移的意义与关键点
测试右移是将测试延伸到研发阶段之后的阶段,一般在产品发布上线后进行的测试,包括在线测试,在线监控和日志分析,甚至包括α测试、β测。测试右移描述的是软件测试工作重心的转变,而不是某项具体的测试技术。 测试右移的含义 测试…...
VLAN原理(Virtual LAN 虚拟局域网)
VLAN(Virtual LAN 虚拟局域网) 1、广播/广播域 2、广播的危害:增加网络/终端负担,传播病毒, 3、如何控制广播?? 控制广播隔离广播域 路由器物理隔离广播 路由器隔离广播缺点&…...
YOLOv8 如何进行目标追踪
检测模型 YOLOv8n 追踪效果 YOLOv8 检测-追踪 分割模型 YOLOv8n-seg 追踪效果 YOLOv8 分割-追踪 关键点模型 YOLOv8n-pose 追踪效果 YOLOv8 检测-追踪 原理解析 目标检测是指在图像或视频中定位并识别出一个或多个目标物体的位置和类别。 目标检测算法通常会输出目标的边界框…...
【暑期每日一练】 day10
目录 选择题 (1) 解析: (2) 解析: (3) 解析: (4) 解析: (5) 解析: 编程题 题一 …...
antd中的Cascader级联选择框怎么清空重置React
项目场景: React项目,使用antd中的Cascader级联选择框 问题描述: 通过其他按钮无法重置选择框中的项 原因分析:(对应解决办法一和二) 1、级联选择框的数据默认是根据options绑定的数组中的value值来进行…...
复现YOLOv5改进最新MPDIoU:有效和准确的边界盒回归的损失,打败G/E/CIoU,效果明显!!!
MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression 论文简介MPDIoU核心设计思路论文方法实验部分加入YOLOv5代码论文地址:https://arxiv.org/pdf/2307.07662.pdf 论文简介 边界盒回归(Bounding box regression, BBR)广泛应用于目标检测和实例分割,是目标…...
低代码在数智化时代中的应用
随着科技的发展,企业从生产到经营中海量的数据持续被记录。数据是望远镜,发现完全不同的商业边界;数据是显微镜,判断肉眼察觉不到的消费和生活行为;数据是雷达,帮助企业提前预测未来的行为。 而通过人工智…...
应用层协议——http
文章目录 1. HTTP协议1.1 认识URL1.2 urlencode和urldecode1.3 HTTP协议格式1.3.1 HTTP请求1.3.2 HTTP响应1.3.3 外网测试1.3.4 添加html文件1.3.5 HTTP常见Header1.3.6 GET和POST 1.4 HTTP的状态码1.4.1 301和3021.4.2 代码实现 1.5 Cookie1.5.1 代码验证1.5.2 Cookiesession …...
element-tree-line el-tree 添加结构线 添加虚线
概览:给element组件添加上虚线,通过使用插件element-tree-line 参考连接: 参考别人的博客 安装插件: # npm npm install element-tree-line -S # yarn yarn add element-tree-line -S main.js全局注册引入插件: imp…...
【Lua学习笔记】Lua进阶——函数和闭包
文章目录 函数函数嵌套闭包Closures可变函数函数重载 函数 函数嵌套 function A()print("这里是函数A")return function ()print("返回函数不要起名")end end B A() B()输出: 这里是函数A 返回函数不要起名使用函数嵌套的用法,我…...
大学生竞赛管理系统springboot比赛报名信息java jsp源代码mysql
本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 大学生竞赛管理系统springboot 系统有3权限ÿ…...
UnixBench 5.1.3 银河麒麟桌面操作系统V10 (SP1) ARM64 aarch64 图形性能测试 2d 3d, glmark2 3d测试
编译 安装libgl sudo apt install libgl-dev yeqiangyeqiang-greatwall:~/Downloads/UnixBench$ sudo apt install libgl-dev [sudo] yeqiang 的密码: 正在读取软件包列表... 完成 正在分析软件包的依赖关系树 正在读取状态信息... 完成 下列软件包…...
JavaScript高级——ES6基础入门
目录 前言let 和 const块级作用域模板字符串一.模板字符串是什么二.模板字符串的注意事项三. 模板字符串的应用 箭头函数一.箭头函数是什么二.普通函数与箭头函数的转换三.this指向1. 全局作用域中的 this 指向2. 一般函数(非箭头函数)中的this指向3.箭头…...
2023年超越期待的高性能视频剪辑主机推荐| Intel 蝰蛇峡谷测评
1、开箱 蝰蛇峡谷的开箱体验是非常令人兴奋的。首先,打开包装后,你会看到一个精致且高质感的机箱,给人一种专业的感觉。蝰蛇峡谷的外观设计简洁大方,黑色的机箱与红色的Logo相得益彰,展现了其高性能的特点。 在打开机…...
1400*A. Factory
Examples input 1 5 output No input 3 6 output Yes 题意: a 和 m,a 不断加 a%m ,如果 a 有一次能够被 m 整除,则打印 Yes,如果一直循环永远不可能被 m 整除,则打印 No 解析: 可以观…...
OpenHarmony开源鸿蒙学习入门 - 基于3.2Release 应用开发环境安装
OpenHarmony开源鸿蒙学习入门 - 基于3.2Release 应用开发环境安装 基于目前官方master主支,最新文档版本3.2Release,更新应用开发环境安装文档。 一、安装IDE: 1.IDE安装的系统要求 2.IDE下载官网链接(IDE下载链接) …...
Linux 查看服务器内存、CPU、网络等占用情况的命令
1、查看物理CPU个数:cat cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l 2、查看服务器CPU内核个数:cat 每个物理CPU中core的个数(即核数) cat /proc/cpuinfo | grep "cpu cores" | u…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
