当前位置: 首页 > news >正文

每日一题——重建二叉树

重建二叉树

题目描述
给定节点数为 n 的二叉树的前序遍历和中序遍历结果,请重建出该二叉树并返回它的头结点。
例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出如下图所示。
tupian1
提示:
1.vin.length == pre.length
2.pre 和 vin 均无重复元素
3.vin出现的元素均出现在 pre里
4.只需要返回根结点,系统会自动输出整颗树做答案对比
数据范围:n≤2000,节点的值:−10000≤val≤10000
要求:空间复杂度 O(n),时间复杂度 O(n)

思考了好几天没有想到解题方法,以下方案参考了大家的解题思路:

采用的方法:递归
递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。

思路:二叉树的前序遍历,我们可以直到第一个元素是根节点,因为序列没有重复的元素,我们可以从中序遍历中找到根节点,将一个树分为左子树和右子树两个部分。
具体做法:

  1. 先根据前序遍历第一个点构建根节点;
  2. 然后根据中序遍历找到根节点在数组中的位置;
  3. 再按照字数的节点数将两个遍历的序列分割成子数组,将子数组送入函数构建子树;
  4. 直到子树的序列长度为0,结束递归。
class TreeNode:def __init__(self, x):self.val = xself.left = Noneself.right = None
#
# 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
# 
# @param preOrder int整型一维数组 
# @param vinOrder int整型一维数组 
# @return TreeNode类
#
class Solution:def reConstructBinaryTree(self , preOrder: List[int], vinOrder: List[int]) -> TreeNode:# write code here# 分别获取中序遍历和前序遍历的长度len_pre = len(preOrder)len_vin = len(vinOrder)# 判断这两个长度都不为0if len_pre == 0 or len_vin == 0:return None# 构建根节点root = TreeNode(preOrder[0])# 从中序遍历中找到根节点所在的位置for i in range(len_vin):if preOrder[0] == vinOrder[i]:# 获取左子树的前序遍历left_pre = preOrder[:i]# 获取左子树的中序遍历left_vin = vinOrder[1:i+1]# 构建左子树root.left = reConstructBinaryTree(left_pre, left_vin)# 获取右子树的前序遍历right_pre = preOrder[i+1:]# 获取右子树的中序遍历right_vin = vinOrder[i+1:]# 构建右子树root.right = reConstructBinaryTree(right_pre, right_vin)breakreturn root

相关文章:

每日一题——重建二叉树

重建二叉树 题目描述 给定节点数为 n 的二叉树的前序遍历和中序遍历结果,请重建出该二叉树并返回它的头结点。 例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出如下图所示。 提示: 1.vin.length pre.length 2.pre 和…...

Python - json与字典dict

Python中的JSON和字典都是数据序列化的格式,它们都可以将数据转换为字符串以便于存储或传输。虽然它们有一些相似之处,但也有很多不同之处。 字典 字典是Python中的一种数据类型,它是一个键值对的集合。每个键对应一个值,可以通…...

性能测试必备监控技能linux篇

前言 如果性能测试的目标服务器是linux系统,在如何使用linux自带的命令来实现性能测试过程的监控分析呢? 对于日常性能测试来讲,在linux下或是类Unix系统,我们必须掌握以下常用的指标查看命令。 ps pstree top free vmstat …...

【如何训练一个中英翻译模型】LSTM机器翻译模型部署之ncnn(python)(五)

系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一) 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三) 【如何训练…...

C++ 面向对象三大特征

文章目录 一、封装二、继承三、多态 一、封装 目的:隐藏实现细节;模块化 特性: 1) 访问权限: public 所有 protected 子类 private 自己(友元类也可以访问) 2)属性 3)方…...

【Github】自动监测 SSL 证书过期的轻量级监控方案 - Domain Admin

在现代的企业网络中,网站安全和可靠性是至关重要的。一个不注意的SSL证书过期可能导致网站出现问题,给公司业务带来严重的影响。针对这个问题,手动检测每个域名和机器的证书状态需要花费大量的时间和精力。为了解决这个问题,我想向…...

Echarts常见图表展示

一、折线图 1.1 堆叠折线图 const option {title: {text: 折线图,},tooltip: {trigger: axis},legend: {data: [张三, 李四, 王五],bottom: 10,},grid: {left: 3%,right: 4%,bottom: 10%,containLabel: true},xAxis: {type: category,boundaryGap: false,data: [Mon, Tue, We…...

PySpark机器学习实战案例

目录 PySpark机器学习库 分布式机器学习原理 PySpark架构设计 PySpark项目实战...

微软操作系统中,windows server 系列和windows 的区别

Windows Server和Windows Desktop(即我们常说的Windows系统)是Microsoft公司的两种操作系统产品,它们都基于Windows NT内核。两者在设计目标、功能和价格等方面存在显著的区别。 设计目标与功能 Windows Desktop系统主要针对个人用户和企业的…...

本地部署 Stable Diffusion XL 1.0 Gradio Demo WebUI

StableDiffusion XL 1.0 Gradio Demo WebUI 0. 先展示几张 StableDiffusion XL 生成的图片1. 什么是 Stable Diffusion XL Gradio Demo WebUI2. Github 地址3. 安装 Miniconda34. 创建虚拟环境5. 安装 Stable Diffusion XL Gradio Demo WebUI6. 启动 Stable Diffusion XL Gradi…...

模型法在初中物理中的实例与应用

摘要:模型法是初中物理解题的重要方法,它的优点有方便快捷,易于理解等。文章通过列举模型法在初中物理解题时应用的例子,与模型法在学习与生活中的实际应用,说明了模型法可用性高,易于理解,能让…...

el-table 设置行背景颜色 鼠标移入高亮问题处理

一、 设置行背景颜色 1. 需求描述 后端返回表格数据,有特定行数需要用颜色标识。类似于以下需求: 2. 解决方式 方式区别:row-class-name“tableRowClassName”已返回类名的形式设置样式,代码整洁,但是会鼠标高亮&#xff0c…...

嵌入式面试常见题目收藏(超总结)

​ 这篇文章来自很多博客主和其他网站的作者,如有侵权,联系必删 文章出处标注: https://blog.csdn.net/qq_44330858/article/details/128947083 ***如需PDF或者原稿可私信 *** ***如需PDF或者原稿可私信 *** ***如需PDF或者原稿可私信 *** 1.…...

error in file(out, “wt“): cannot open the connection

这个错误在提示我们: 文件无法打开链接,可能是以下原因之一: 文件不存在或者路径错误;文件正在被其他程序占用;没有足够的权限来访问该文件;硬盘内存不足; 可以尝试的方法: 可以检…...

Redis (一)消息订阅和发送测试

〇、redis 配置 1、概况 本文基于 Ubuntu20.04 云服务器配置Redis,且在本地进行 Redis 测试。 2、目录概况 一、配置文件 位于 /config/app.yml 中,目的用于 Redis 初始化: redis:addr: "39.104.**.28:6379"password: "p…...

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归多输入单输出区间预测

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRGRU门控循环单元分位数回归分位数回归多输入单输出区间…...

Debian 12.1 “书虫 “发布,包含 89 个错误修复和 26 个安全更新

导读Debian 项目今天宣布,作为最新 Debian GNU/Linux 12 “书虫 “操作系统系列的首个 ISO 更新,Debian 12.1 正式发布并全面上市。 Debian 12.1 是在 Debian GNU/Linux 12 “书虫 “发布六周后推出的,目的是为那些希望在新硬件上部署操作系统…...

hadoop部署配置

端口名称 Hadoop2.x Hadoop3.x NameNode内部通信端口 8020 / 9000 8020 / 9000/9820 NameNode HTTP UI 50070 9870 MapReduce查看执行任务端口 8088 8088 历史服务器通信端口 19888 19888 端口名称Hadoop2.xHadoop3.xNameNode内部通信端口8020 / 90008020 / 9000/9820NameNode…...

文心一言 VS 讯飞星火 VS chatgpt (68)-- 算法导论6.5 7题

文心一言 VS 讯飞星火 VS chatgpt (68)-- 算法导论6.5 7题 七、试说明如何使用优先队列来实现一个先进先出队列,以及如何使用优先队列来实现栈(队列和栈的定义见 10.1 节。) 文心一言: 优先队列是一种数据结构,其中…...

uniapp:手写签名,多张图合成一张图

要实现的内容&#xff1a;手写签名&#xff0c;协议内容。点击提交后&#xff1a;生成1张图片&#xff0c;有协议内容和签署日期和签署人。 实现的效果图如下&#xff1a; 1、签名页面 <template><view class"index"><u-navbar title"电子协议…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码&#xff1a;冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...

从零开始了解数据采集(二十八)——制造业数字孪生

近年来&#xff0c;我国的工业领域正经历一场前所未有的数字化变革&#xff0c;从“双碳目标”到工业互联网平台的推广&#xff0c;国家政策和市场需求共同推动了制造业的升级。在这场变革中&#xff0c;数字孪生技术成为备受关注的关键工具&#xff0c;它不仅让企业“看见”设…...