每日一题——重建二叉树
重建二叉树
题目描述
给定节点数为 n 的二叉树的前序遍历和中序遍历结果,请重建出该二叉树并返回它的头结点。
例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出如下图所示。
提示:
1.vin.length == pre.length
2.pre 和 vin 均无重复元素
3.vin出现的元素均出现在 pre里
4.只需要返回根结点,系统会自动输出整颗树做答案对比
数据范围:n≤2000,节点的值:−10000≤val≤10000
要求:空间复杂度 O(n),时间复杂度 O(n)
思考了好几天没有想到解题方法,以下方案参考了大家的解题思路:
采用的方法:递归
递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。
思路:二叉树的前序遍历,我们可以直到第一个元素是根节点,因为序列没有重复的元素,我们可以从中序遍历中找到根节点,将一个树分为左子树和右子树两个部分。
具体做法:
- 先根据前序遍历第一个点构建根节点;
- 然后根据中序遍历找到根节点在数组中的位置;
- 再按照字数的节点数将两个遍历的序列分割成子数组,将子数组送入函数构建子树;
- 直到子树的序列长度为0,结束递归。
class TreeNode:def __init__(self, x):self.val = xself.left = Noneself.right = None
#
# 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
#
#
# @param preOrder int整型一维数组
# @param vinOrder int整型一维数组
# @return TreeNode类
#
class Solution:def reConstructBinaryTree(self , preOrder: List[int], vinOrder: List[int]) -> TreeNode:# write code here# 分别获取中序遍历和前序遍历的长度len_pre = len(preOrder)len_vin = len(vinOrder)# 判断这两个长度都不为0if len_pre == 0 or len_vin == 0:return None# 构建根节点root = TreeNode(preOrder[0])# 从中序遍历中找到根节点所在的位置for i in range(len_vin):if preOrder[0] == vinOrder[i]:# 获取左子树的前序遍历left_pre = preOrder[:i]# 获取左子树的中序遍历left_vin = vinOrder[1:i+1]# 构建左子树root.left = reConstructBinaryTree(left_pre, left_vin)# 获取右子树的前序遍历right_pre = preOrder[i+1:]# 获取右子树的中序遍历right_vin = vinOrder[i+1:]# 构建右子树root.right = reConstructBinaryTree(right_pre, right_vin)breakreturn root
相关文章:

每日一题——重建二叉树
重建二叉树 题目描述 给定节点数为 n 的二叉树的前序遍历和中序遍历结果,请重建出该二叉树并返回它的头结点。 例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出如下图所示。 提示: 1.vin.length pre.length 2.pre 和…...
Python - json与字典dict
Python中的JSON和字典都是数据序列化的格式,它们都可以将数据转换为字符串以便于存储或传输。虽然它们有一些相似之处,但也有很多不同之处。 字典 字典是Python中的一种数据类型,它是一个键值对的集合。每个键对应一个值,可以通…...

性能测试必备监控技能linux篇
前言 如果性能测试的目标服务器是linux系统,在如何使用linux自带的命令来实现性能测试过程的监控分析呢? 对于日常性能测试来讲,在linux下或是类Unix系统,我们必须掌握以下常用的指标查看命令。 ps pstree top free vmstat …...

【如何训练一个中英翻译模型】LSTM机器翻译模型部署之ncnn(python)(五)
系列文章 【如何训练一个中英翻译模型】LSTM机器翻译seq2seq字符编码(一) 【如何训练一个中英翻译模型】LSTM机器翻译模型训练与保存(二) 【如何训练一个中英翻译模型】LSTM机器翻译模型部署(三) 【如何训练…...
C++ 面向对象三大特征
文章目录 一、封装二、继承三、多态 一、封装 目的:隐藏实现细节;模块化 特性: 1) 访问权限: public 所有 protected 子类 private 自己(友元类也可以访问) 2)属性 3)方…...

【Github】自动监测 SSL 证书过期的轻量级监控方案 - Domain Admin
在现代的企业网络中,网站安全和可靠性是至关重要的。一个不注意的SSL证书过期可能导致网站出现问题,给公司业务带来严重的影响。针对这个问题,手动检测每个域名和机器的证书状态需要花费大量的时间和精力。为了解决这个问题,我想向…...

Echarts常见图表展示
一、折线图 1.1 堆叠折线图 const option {title: {text: 折线图,},tooltip: {trigger: axis},legend: {data: [张三, 李四, 王五],bottom: 10,},grid: {left: 3%,right: 4%,bottom: 10%,containLabel: true},xAxis: {type: category,boundaryGap: false,data: [Mon, Tue, We…...
PySpark机器学习实战案例
目录 PySpark机器学习库 分布式机器学习原理 PySpark架构设计 PySpark项目实战...
微软操作系统中,windows server 系列和windows 的区别
Windows Server和Windows Desktop(即我们常说的Windows系统)是Microsoft公司的两种操作系统产品,它们都基于Windows NT内核。两者在设计目标、功能和价格等方面存在显著的区别。 设计目标与功能 Windows Desktop系统主要针对个人用户和企业的…...

本地部署 Stable Diffusion XL 1.0 Gradio Demo WebUI
StableDiffusion XL 1.0 Gradio Demo WebUI 0. 先展示几张 StableDiffusion XL 生成的图片1. 什么是 Stable Diffusion XL Gradio Demo WebUI2. Github 地址3. 安装 Miniconda34. 创建虚拟环境5. 安装 Stable Diffusion XL Gradio Demo WebUI6. 启动 Stable Diffusion XL Gradi…...

模型法在初中物理中的实例与应用
摘要:模型法是初中物理解题的重要方法,它的优点有方便快捷,易于理解等。文章通过列举模型法在初中物理解题时应用的例子,与模型法在学习与生活中的实际应用,说明了模型法可用性高,易于理解,能让…...

el-table 设置行背景颜色 鼠标移入高亮问题处理
一、 设置行背景颜色 1. 需求描述 后端返回表格数据,有特定行数需要用颜色标识。类似于以下需求: 2. 解决方式 方式区别:row-class-name“tableRowClassName”已返回类名的形式设置样式,代码整洁,但是会鼠标高亮,…...

嵌入式面试常见题目收藏(超总结)
这篇文章来自很多博客主和其他网站的作者,如有侵权,联系必删 文章出处标注: https://blog.csdn.net/qq_44330858/article/details/128947083 ***如需PDF或者原稿可私信 *** ***如需PDF或者原稿可私信 *** ***如需PDF或者原稿可私信 *** 1.…...
error in file(out, “wt“): cannot open the connection
这个错误在提示我们: 文件无法打开链接,可能是以下原因之一: 文件不存在或者路径错误;文件正在被其他程序占用;没有足够的权限来访问该文件;硬盘内存不足; 可以尝试的方法: 可以检…...

Redis (一)消息订阅和发送测试
〇、redis 配置 1、概况 本文基于 Ubuntu20.04 云服务器配置Redis,且在本地进行 Redis 测试。 2、目录概况 一、配置文件 位于 /config/app.yml 中,目的用于 Redis 初始化: redis:addr: "39.104.**.28:6379"password: "p…...

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归多输入单输出区间预测
区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRGRU门控循环单元分位数回归分位数回归多输入单输出区间…...

Debian 12.1 “书虫 “发布,包含 89 个错误修复和 26 个安全更新
导读Debian 项目今天宣布,作为最新 Debian GNU/Linux 12 “书虫 “操作系统系列的首个 ISO 更新,Debian 12.1 正式发布并全面上市。 Debian 12.1 是在 Debian GNU/Linux 12 “书虫 “发布六周后推出的,目的是为那些希望在新硬件上部署操作系统…...

hadoop部署配置
端口名称 Hadoop2.x Hadoop3.x NameNode内部通信端口 8020 / 9000 8020 / 9000/9820 NameNode HTTP UI 50070 9870 MapReduce查看执行任务端口 8088 8088 历史服务器通信端口 19888 19888 端口名称Hadoop2.xHadoop3.xNameNode内部通信端口8020 / 90008020 / 9000/9820NameNode…...

文心一言 VS 讯飞星火 VS chatgpt (68)-- 算法导论6.5 7题
文心一言 VS 讯飞星火 VS chatgpt (68)-- 算法导论6.5 7题 七、试说明如何使用优先队列来实现一个先进先出队列,以及如何使用优先队列来实现栈(队列和栈的定义见 10.1 节。) 文心一言: 优先队列是一种数据结构,其中…...

uniapp:手写签名,多张图合成一张图
要实现的内容:手写签名,协议内容。点击提交后:生成1张图片,有协议内容和签署日期和签署人。 实现的效果图如下: 1、签名页面 <template><view class"index"><u-navbar title"电子协议…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...