c#: NetTopologySuite凹凸多边形计算
环境:
- .net 6.0
- NetTopologySuite 2.5.0
- vs2022
- 平面二维
一、夹角计算
1.1 计算向量与x轴正方向的夹角
方法: AngleUtility.Angle(Coordinate p)
下图上的t2即为p,之所以这么写是为了和
AngleUtility.AngleBetweenOriented做比较
注意:
- 结果逆时针为正,顺时针为负;
- 相对于x轴;

实例:

1.2 计算两条线段的夹角(区分方向)
方法: AngleUtility.AngleBetweenOriented(Coordinate tip1, Coordinate tail, Coordinate tip2)
注意:
- 结果逆时针为正,顺时针为负;
- ∠t1 tail t2;

实例:

1.3 计算两条线段的夹角(不区分方向)
方法: AngleUtility.AngleBetween(Coordinate tip1, Coordinate tail, Coordinate tip2)
由于不考虑方向,两个线段的夹角总是处在 [0,180°) 范围内。
不在画图显示。
二、检测一个环是否是简单的(IsSimple)
2.1 简单的示例(IsSimple=true):

2.2 复杂的示例(IsSimple=false):


三、多边形的凹凸(convex/concave) 和 顺(Clockwise)/逆(CounterClockwise)时针
3.1 多边形的凹凸定义:
凸多边形(convex): 所有的内角都小于180°;
凹多边形(concave): 至少有一个内角大于180°;
示例:



3.2 多边形的顺逆时针
因为多边形是一个环状的东西,所以在平面上可以用顺逆时针表示它的方向,这在很多计算方法中有用。
多边形的方向应该是整体来看,单看局部点位是无法判断的,如下(仅凭下面三黑点两个红线是判断不出来的):

判断方法,NetTopologySuite已提供,对于上图判断示例如下:

3.3 计算多边形的各个内角值(判断凹凸性)
计算内角,我们可以使用NetTopologySuite的方法:AngleBetweenOriented,这里我们需要按照点位顺序计算。
比如:p1、p2、p3、p4、p5
那么,计算点p2的内角为:∠p1p2p3,再结合多边形的方向(顺逆时针),将它转为(0,360)范围内。
下图为,顺逆时针和凹凸组合下的示意图:

由此可得计算的方法,如下:
public static class FuncLib
{public static List<double> AnalysisAngles(LinearRing ring){if (ring == null || !ring.IsSimple) throw new Exception($"数据错误!");var angels = new List<double>();for (int i = 0, len = ring.Coordinates.Length - 1; i < len; i++){var tail = ring[i];var t2 = ring[(i + 1) % len];var t1 = ring[(i - 1 + len) % len];var angle = AngleUtility.AngleBetweenOriented(t1, tail, t2);var angleDegree = AngleUtility.ToDegrees(angle);if (ring.IsCCW){//逆时针if (angle > 0){//concaveangleDegree = 360 - angleDegree;}else if (angle < 0){//convexangleDegree = -angleDegree;}else{//等于0 平行angleDegree = 180;}}else{//顺时针if (angle < 0){//concaveangleDegree = angleDegree + 360;}else if (angle > 0){//convex}else{//等于0 平行angleDegree = 180;}}angels.Add(angleDegree);}return angels;}
}
验证如下图形:

相关文章:
c#: NetTopologySuite凹凸多边形计算
环境: .net 6.0NetTopologySuite 2.5.0vs2022平面二维 一、夹角计算 1.1 计算向量与x轴正方向的夹角 方法: AngleUtility.Angle(Coordinate p) 下图上的t2即为p,之所以这么写是为了和AngleUtility.AngleBetweenOriented做比较 注意: 结果…...
NFT Insider #86:A16z 领投,YGG 获得 1380 万美元融资,The Sandbox与《北斗神拳》合作
引言:NFT Insider由NFT收藏组织WHALE Members、BeepCrypto联合出品,浓缩每周NFT新闻,为大家带来关于NFT最全面、最新鲜、最有价值的讯息。每期周报将从NFT市场数据,艺术新闻类,游戏新闻类,虚拟世界类&#…...
Sort_Algorithm
排序算法前言插入排序折半插入排序希尔排序冒泡排序快速排序选择排序堆排序归并排序前言 排序算法:将一堆数据元素按关键字递增或者递减的顺序,进行排序。 排序算法的评价指标:时间复杂度,空间复杂度,算法稳定性。 算…...
【初探人工智能】2、雏形开始长成
【初探人工智能】2、雏形开始长成【初探人工智能】2、雏形开始长成安装Flask封装Web接口雏形设置接收参数功能验证聊天写代码代码补全生成图片写在后面笔者初次接触人工智能领域,文章中错误的地方还望各位大佬指正! 【初探人工智能】2、雏形开始长成 在…...
【LeetCode】剑指 Offer(2)
目录 写在前面: 题目: 题目的接口: 解题思路: 代码: 过啦!!! 写在最后: 写在前面: 今天的每日一题好难,我不会dp啊啊啊啊啊啊。 所以&am…...
【JavaSE】Lambda、Stream(659~686)
659.每天一考 1.写出获取Class实例的三种常见方式 Class clazz1 String.class; Class clazz2 person.getClass(); //sout(person); //xxx.yyy.zzz.Person... Class clazz3 Class.forName(String classPath);//体现反射的动态性2.谈谈你对Class类的理解 Class实例对应着加载…...
有限差法(Finite Difference)求梯度和Hessian Matrix(海森矩阵)的python实现
数学参考 有限差方法求导,Finite Difference Approximations of Derivatives,是数值计算中常用的求导方法。数学上也比较简单易用。本文主要针对的是向量值函数,也就是f(x):Rn→Rf(x):\mathbb{R^n}\rightarrow \mathbb{R}f(x):Rn→R当然&…...
day33 贪心算法 | 1005、K次取反后最大化的数组和 134、加油站 135、分发糖果
题目 1005、K次取反后最大化的数组和 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。) 以这种方式修改…...
《蓝桥杯每日一题》递推·AcWing 3777. 砖块
1.题目描述n 个砖块排成一排,从左到右编号依次为 1∼n。每个砖块要么是黑色的,要么是白色的。现在你可以进行以下操作若干次(可以是 0 次):选择两个相邻的砖块,反转它们的颜色。(黑变白…...
mysql读写分离(maxscale)
1. 环境架构 需要三台服务器。192.168.2.10(master)192.168.2.20(slave)192.168.2.30(maxscale) 2. 部署mysql主从同步 mysql主从同步可以参考mysql主从同步 3. 部署maxscale服务 MaxScale中间件软件 …...
第八章 - 数据分组( group by , having , select语句顺序)
第八章 - 数据分组 group by数据分组过滤分组 having分组排序groub by语句的一些规定select语句顺序数据分组 在使用group by进行分组时,一般都会配合聚合函数一起使用,实现统计数据的功能。比如下面例子,需要按性别计算人数。按性别进行分组…...
Git(GitHub,Gitee 码云,GitLab)详细讲解
目录第一章 Git 概述1.1 何为版本控制1.2 为什么需要版本控制1.3 版本控制工具1.4 Git 简史1.5 Git 工作机制1.6 Git 和代码托管中心第二章 Git 安装第三章 Git 常用命令3.1 设置用户签名3.2 初始化本地库3.3 查看本地库状态3.3.1 首次查看(工作区没有任何文件&…...
策略模式(Strategy Pattern)
编写鸭子项目,具体要求如下: 1) 有各种鸭子(比如 野鸭、北京鸭,水鸭等,鸭子有各种行为,比如 叫,飞行等) 2)显示鸭子的信息 传统方案解决鸭子问题 1࿰…...
《Qt6开发及实例》6-2 Qt6基础图形的绘制
目录 一、绘图框架设计 二、绘图区的实现 2.1 PaintArea类 2.2 PaintArea类讲解 三、主窗口的实现 3.1 MainWidget类 3.2 MainWidget类讲解 3.3 槽函数编写 3.5 其他内容 一、绘图框架设计 界面 两个类 二、绘图区的实现 2.1 PaintArea类 paintarea.h #ifndef…...
LeetCode 382. 链表随机节点
原题链接 难度:middle\color{orange}{middle}middle 题目描述 给你一个单链表,随机选择链表的一个节点,并返回相应的节点值。每个节点 被选中的概率一样 。 实现 SolutionSolutionSolution 类: Solution(ListNodehead)Solution…...
iOS开发AppleDeveloper中给别人授权开发者权限后,对方一直显示不了我的开发账号team
在iOS开发经常出现多人协作开发的情况。这时我们通常要发邮件邀请别的用户为开发者或者app管理就可以开发我们自己的项目了。但是这次我给别人授权开发者权限后,发现别人权限中没有证书相关权限如图:并且别人登录该账号后,在xcode中只有一个看…...
FreeRTOS数据类型和编程规范
目录 数据类型 变量名 函数名 宏的名 数据类型 每个移植的版本都含有自己的portmacro.h头文件,里面定义了2个数据类型 TickType_t FreeRTOS配置了一个周期性的时钟中断:Tick Interrupt每发生一次中断,中断次数累加,这被称为t…...
【python知识】win10下如何用python将网页转成pdf文件
一、说明 本篇记录一个自己享用的简单工具。在大量阅读网上文章中,常常遇到一个专题对应多篇文章,用浏览器的收藏根本不够。能否见到一篇文章具有搜藏价值,就转到线下,以备日后慢慢消化吸收。这里终于找到一个办法,将在…...
C语言常见关键字
写在前面 这个博客是结合C语言深度解剖这本书和我以前学的知识综合而成的,我希望可以更见详细的谈一下C语言的关键字,内容有点多,有错误还请斧正. 常见关键字 下面我们说下C语言的关键字,所谓的关键字是指具有特定功能的单词,我们可以使用关键字来帮助我们完成不同的事物.C语…...
【MT7628】固件开发-SDK4320添加MT7612E WiFi驱动操作说明
解压5G WiFi MT7612E驱动1.1解压指令 tar -xvf MT76x2E_MT7620_LinuxAP_V3.0.4.0_P2_DPA_20160308.tar.bz2 1.2解压之后会出现以下两个目录 rlt_wifi rlt_wifi_ap 1.3将解压后的文件拷贝到系统下 拷贝路径 RT288x_SDK/source/linux-2.6.36.x/drivers/net/wireless 内核中打开驱…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
