【初探人工智能】2、雏形开始长成
【初探人工智能】2、雏形开始长成
- 【初探人工智能】2、雏形开始长成
- 安装Flask
- 封装Web接口雏形
- 设置接收参数
- 功能验证
- 聊天
- 写代码
- 代码补全
- 生成图片
- 写在后面
笔者初次接触人工智能领域,文章中错误的地方还望各位大佬指正!
【初探人工智能】2、雏形开始长成
在上一篇文章中我们已经初步体验了一下人工智能的聊天功能,只是不具备真正的交互功能。这篇文章主要介绍如何打造一个基于Web的交互环境。
安装Flask
Flask是一个Python编写的Web 微框架,让我们可以使用Python语言快速实现一个网站或Web服务。我们可以通过Flask将聊天功能封装成Web接口对外发布。
要使用Flask,需要先安装,执行命令:
pip install flask
安装过程:
(OpenAI) wux_labs@wux-labs-vm:~$ pip install flask
Collecting flaskDownloading Flask-2.2.3-py3-none-any.whl (101 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 101.8/101.8 kB 1.2 MB/s eta 0:00:00
Collecting click>=8.0Downloading click-8.1.3-py3-none-any.whl (96 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 96.6/96.6 kB 2.7 MB/s eta 0:00:00
Collecting Jinja2>=3.0Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.1/133.1 kB 9.7 MB/s eta 0:00:00
Collecting importlib-metadata>=3.6.0Downloading importlib_metadata-6.0.0-py3-none-any.whl (21 kB)
Collecting Werkzeug>=2.2.2Downloading Werkzeug-2.2.3-py3-none-any.whl (233 kB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 233.6/233.6 kB 8.3 MB/s eta 0:00:00
Collecting itsdangerous>=2.0Downloading itsdangerous-2.1.2-py3-none-any.whl (15 kB)
Collecting zipp>=0.5Using cached zipp-3.13.0-py3-none-any.whl (6.7 kB)
Collecting MarkupSafe>=2.0Downloading MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)
Installing collected packages: zipp, MarkupSafe, itsdangerous, click, Werkzeug, Jinja2, importlib-metadata, flask
Successfully installed Jinja2-3.1.2 MarkupSafe-2.1.2 Werkzeug-2.2.3 click-8.1.3 flask-2.2.3 importlib-metadata-6.0.0 itsdangerous-2.1.2 zipp-3.13.0
(OpenAI) wux_labs@wux-labs-vm:~$

安装好Flask之后,写一个脚本server.py验证一下。
from flask import Flask
app = Flask(__name__)@app.route('/')
def hello_world():return 'Hello World'if __name__ == '__main__':app.run()

启动服务:
python server.py

验证一下:

但是这样只能本地访问,无法外网访问。Flask类的run()方法可以指定参数,让服务按照我们的预期运行,这里需要指定外网可以访问。修改一下代码:
from flask import Flask
app = Flask(__name__)@app.route('/')
def hello_world():return 'Hello World'if __name__ == '__main__':app.run(host='0.0.0.0')

重新启动后,通过浏览器访问。

这样就可以通过外网访问了。
封装Web接口雏形
现在,我们可以将自己的功能封装成Web接口了,修改脚本:
from flask import Flask
import os
import openaiopenai.api_key = os.getenv("openai_api_key")app = Flask(__name__)@app.route('/chatgpt')
def chatgpt():response = openai.Completion.create(model="text-davinci-003", # 最强大的GPT-3模型,This model's maximum context length is 4097 tokensprompt="介绍一下机器学习算法",temperature=0.8,max_tokens=3000,top_p=1.0,frequency_penalty=0.5,presence_penalty=0.0)return response.choices[0].textif __name__ == '__main__':app.run(host='0.0.0.0')
重新启动之后,通过浏览器访问一下:

这样,我们就可以通过Web接口来调用相应的API了。
设置接收参数
接下来,修改我们的Web接口,让它可以接收用户参数。
from flask import Flask, request
import os, json
import openaiopenai.api_key = os.getenv("openai_api_key")app = Flask(__name__)@app.route('/chatgpt', methods=['post'])
def chatgpt():get_data = request.get_data()get_data = json.loads(get_data)response = openai.Completion.create(model=get_data["model"],prompt=get_data["prompt"],temperature=get_data["temperature"],max_tokens=get_data["max_tokens"],top_p=get_data["top_p"],frequency_penalty=get_data["frequency_penalty"],presence_penalty=get_data["presence_penalty"],)return response.choices[0].textif __name__ == '__main__':app.run(host='0.0.0.0')
功能验证
由于我们将接口改成了接收POST请求的,所以不能直接通过浏览器访问了,需要借助客户端工具,比如Postman、PyCharm中的Http Request插件等。
聊天
基于上述代码,发起POST请求,使用text-davinci-003模型,得到响应如下。

写代码
使用text-davinci-003模型,让机器人生成一段代码试试。

代码补全
尝试一下其他模型,比如code-davinci-002,该模型可用于补全代码,不过当前处于beta阶段。发起POST请求,补全一段Python代码中的测试用例代码,输出的内容为:
test_sum_numbers():
assert sum_numbers(2, 3) == 5
assert sum_numbers(1, -1) == 0
assert sum_numbers(10.5, 2) == 12.5
test_sum_numbers()
# 测试错误的函数:
def test_sum_numbers():
assert sum_numbers(2, 3) == 6 # 这个测试会失败
test_sum_numbers()# 单元测试中的断言函数:assertEqual()、assertTrue()、assertFalse()……以及方法还有很多。你可以在文档中查看所有的断言函数。

上述代码只有openai生成的部分。
如果是在交互式环境下,真实场景应该是在代码后面进行补全:

生成图片
修改一下脚本,在代码中添加生成图片的接口:
from flask import Flask, request
import os, json
import openaiopenai.api_key = os.getenv("openai_api_key")app = Flask(__name__)@app.route('/chat', methods=['post'])
def chat():get_data = request.get_data()get_data = json.loads(get_data)response = openai.Completion.create(model=get_data["model"],prompt=get_data["prompt"],temperature=get_data["temperature"],max_tokens=get_data["max_tokens"],top_p=get_data["top_p"],frequency_penalty=get_data["frequency_penalty"],presence_penalty=get_data["presence_penalty"],)return response.choices[0].text@app.route("/image", methods=['post'])
def image():get_data = request.get_data()get_data = json.loads(get_data)response = openai.Image.create(prompt=get_data["prompt"],n=1,size="1024x1024")return response['data'][0]['url']if __name__ == '__main__':app.run(host='0.0.0.0')
重启服务后发送POST请求,生成的图片结果如下。

写在后面
至此,我们的机器人就具备了一些基本的功能了,后续做好用户界面就可以了。
相关文章:
【初探人工智能】2、雏形开始长成
【初探人工智能】2、雏形开始长成【初探人工智能】2、雏形开始长成安装Flask封装Web接口雏形设置接收参数功能验证聊天写代码代码补全生成图片写在后面笔者初次接触人工智能领域,文章中错误的地方还望各位大佬指正! 【初探人工智能】2、雏形开始长成 在…...
【LeetCode】剑指 Offer(2)
目录 写在前面: 题目: 题目的接口: 解题思路: 代码: 过啦!!! 写在最后: 写在前面: 今天的每日一题好难,我不会dp啊啊啊啊啊啊。 所以&am…...
【JavaSE】Lambda、Stream(659~686)
659.每天一考 1.写出获取Class实例的三种常见方式 Class clazz1 String.class; Class clazz2 person.getClass(); //sout(person); //xxx.yyy.zzz.Person... Class clazz3 Class.forName(String classPath);//体现反射的动态性2.谈谈你对Class类的理解 Class实例对应着加载…...
有限差法(Finite Difference)求梯度和Hessian Matrix(海森矩阵)的python实现
数学参考 有限差方法求导,Finite Difference Approximations of Derivatives,是数值计算中常用的求导方法。数学上也比较简单易用。本文主要针对的是向量值函数,也就是f(x):Rn→Rf(x):\mathbb{R^n}\rightarrow \mathbb{R}f(x):Rn→R当然&…...
day33 贪心算法 | 1005、K次取反后最大化的数组和 134、加油站 135、分发糖果
题目 1005、K次取反后最大化的数组和 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。) 以这种方式修改…...
《蓝桥杯每日一题》递推·AcWing 3777. 砖块
1.题目描述n 个砖块排成一排,从左到右编号依次为 1∼n。每个砖块要么是黑色的,要么是白色的。现在你可以进行以下操作若干次(可以是 0 次):选择两个相邻的砖块,反转它们的颜色。(黑变白…...
mysql读写分离(maxscale)
1. 环境架构 需要三台服务器。192.168.2.10(master)192.168.2.20(slave)192.168.2.30(maxscale) 2. 部署mysql主从同步 mysql主从同步可以参考mysql主从同步 3. 部署maxscale服务 MaxScale中间件软件 …...
第八章 - 数据分组( group by , having , select语句顺序)
第八章 - 数据分组 group by数据分组过滤分组 having分组排序groub by语句的一些规定select语句顺序数据分组 在使用group by进行分组时,一般都会配合聚合函数一起使用,实现统计数据的功能。比如下面例子,需要按性别计算人数。按性别进行分组…...
Git(GitHub,Gitee 码云,GitLab)详细讲解
目录第一章 Git 概述1.1 何为版本控制1.2 为什么需要版本控制1.3 版本控制工具1.4 Git 简史1.5 Git 工作机制1.6 Git 和代码托管中心第二章 Git 安装第三章 Git 常用命令3.1 设置用户签名3.2 初始化本地库3.3 查看本地库状态3.3.1 首次查看(工作区没有任何文件&…...
策略模式(Strategy Pattern)
编写鸭子项目,具体要求如下: 1) 有各种鸭子(比如 野鸭、北京鸭,水鸭等,鸭子有各种行为,比如 叫,飞行等) 2)显示鸭子的信息 传统方案解决鸭子问题 1࿰…...
《Qt6开发及实例》6-2 Qt6基础图形的绘制
目录 一、绘图框架设计 二、绘图区的实现 2.1 PaintArea类 2.2 PaintArea类讲解 三、主窗口的实现 3.1 MainWidget类 3.2 MainWidget类讲解 3.3 槽函数编写 3.5 其他内容 一、绘图框架设计 界面 两个类 二、绘图区的实现 2.1 PaintArea类 paintarea.h #ifndef…...
LeetCode 382. 链表随机节点
原题链接 难度:middle\color{orange}{middle}middle 题目描述 给你一个单链表,随机选择链表的一个节点,并返回相应的节点值。每个节点 被选中的概率一样 。 实现 SolutionSolutionSolution 类: Solution(ListNodehead)Solution…...
iOS开发AppleDeveloper中给别人授权开发者权限后,对方一直显示不了我的开发账号team
在iOS开发经常出现多人协作开发的情况。这时我们通常要发邮件邀请别的用户为开发者或者app管理就可以开发我们自己的项目了。但是这次我给别人授权开发者权限后,发现别人权限中没有证书相关权限如图:并且别人登录该账号后,在xcode中只有一个看…...
FreeRTOS数据类型和编程规范
目录 数据类型 变量名 函数名 宏的名 数据类型 每个移植的版本都含有自己的portmacro.h头文件,里面定义了2个数据类型 TickType_t FreeRTOS配置了一个周期性的时钟中断:Tick Interrupt每发生一次中断,中断次数累加,这被称为t…...
【python知识】win10下如何用python将网页转成pdf文件
一、说明 本篇记录一个自己享用的简单工具。在大量阅读网上文章中,常常遇到一个专题对应多篇文章,用浏览器的收藏根本不够。能否见到一篇文章具有搜藏价值,就转到线下,以备日后慢慢消化吸收。这里终于找到一个办法,将在…...
C语言常见关键字
写在前面 这个博客是结合C语言深度解剖这本书和我以前学的知识综合而成的,我希望可以更见详细的谈一下C语言的关键字,内容有点多,有错误还请斧正. 常见关键字 下面我们说下C语言的关键字,所谓的关键字是指具有特定功能的单词,我们可以使用关键字来帮助我们完成不同的事物.C语…...
【MT7628】固件开发-SDK4320添加MT7612E WiFi驱动操作说明
解压5G WiFi MT7612E驱动1.1解压指令 tar -xvf MT76x2E_MT7620_LinuxAP_V3.0.4.0_P2_DPA_20160308.tar.bz2 1.2解压之后会出现以下两个目录 rlt_wifi rlt_wifi_ap 1.3将解压后的文件拷贝到系统下 拷贝路径 RT288x_SDK/source/linux-2.6.36.x/drivers/net/wireless 内核中打开驱…...
如何从手工测试进阶自动化测试?阿里10年测开经验分享...
随着行业的竞争加剧,互联网产品迭代速度越来越快,QA 与测试工程师都需要在越来越短的测试周期内充分保证质量。可是,App 测试面临着很多挑战,比如多端发布、多版本发布、多机型发布等等,导致了手工测试很难完全胜任。因…...
C++复习笔记11
1. vector是表示可变大小数组的序列容器。 2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被…...
【MT7628】固件开发-SDK4320添加MT7628 WiFi驱动操作说明
解压2.4G WiFi MT7628驱动1.1解压指令 tar -xvf MT7628_LinuxAP_V4.1.0.0_DPA_20160310.tar.bz2 1.2解压之后会出现以下两个目录 mt_wifi mt_wifi_ap 1.3将解压后的文件拷贝到系统下 拷贝路径 RT288x_SDK/source/linux-2.6.36.x/drivers/net/wireless 内核中打开驱动编译修改R…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
