Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用
系列文章目录
PyTorch深度学习——Anaconda和PyTorch安装
Pytorch深度学习-----数据模块Dataset类
Pytorch深度学习------TensorBoard的使用
Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop)
Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10)
Pytorch深度学习-----DataLoader的用法
Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用
Pytorch深度学习-----神经网络的卷积操作
Pytorch深度学习-----神经网络之卷积层用法详解
文章目录
- 系列文章目录
- 一、池化操作是什么?
- 二、torch.nn.MaxPool2d介绍
- 1.相关参数
- 2.最大池化处理上述矩阵并验算结果
- 3.最大池化处理CIFAR10数据集图片
一、池化操作是什么?
池化操作是卷积神经网络(CNN)中的一种常用操作,用于减小特征图的尺寸,并提取出最重要的特征。它通过在特定区域内进行汇总或聚合来实现这一目标。
常见的池化操作有最大池化(Max Pooling)和平均池化(Average Pooling)。最大池化在每个区域内选择最大值作为池化结果,而平均池化则取区域内数值的平均值。这两种池化操作都通过滑动窗口在特征图上移动,并在每个窗口内进行池化操作。
池化操作的主要作用有两个方面:
特征降维:通过减小特征图的尺寸,减少了后续层的计算量和参数数量,有助于降低过拟合风险。
提取主要特征:通过选择最大值或求平均值,池化操作可以提取出最显著的特征,有助于保留重要信息并抑制噪声。
以最大池化操作作为示例如下:

二、torch.nn.MaxPool2d介绍
1.相关参数
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
kernel_size:表示池化核的大小,类型为int 或者元组。
stride=None:表示步长的大小,与卷积层不同,池化层步长大小默认为kernel_size的大小。
padding=0:表示在输入图像外围增加一圈0,和前面卷积核一样。
dilation=1:表示设置核的膨胀率,默认 dilation=1,即如果kernel_size =3,那么核的大小就是3×3。如果dilation = 2,kernel_size =3×3,那么每列数据与每列数据,每行数据与每行数据中间都再加一行或列数据,数据都用0填充,那么核的大小就变成5×5。
return_indices=False:表示用来控制要不要返回最大值的索引位置,如果为true,那么要记住最大池化后最大值的所在索引位置,后面上采样可能要用上,为false则不用记住位置。
ceil_mode=False:表示计算输出结果形状的时候,是使用向上取整还是向下取整。即要不要舍弃无法覆盖核的大小的数值。
注意 输入和输出的input需要为NCHW或者CHW
如下官网图所示

2.最大池化处理上述矩阵并验算结果
当设置ceil_mode=True时
示例代码如下:
import torch
from torch import nninput = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]],dtype=float) # 使用dtype将此矩阵的数字变为浮点型
# 准备的参数情况
print(input.shape) # torch.Size([5, 5])
# 进行reshape
input = torch.reshape(input,(1,5,5)) # 修改shape为chw
print(input.shape) # torch.Size([1, 5, 5])# 搭建神经网络并进行池化操作
class Lgl(nn.Module):def __init__(self):super(Lgl,self).__init__()self.maxpool2 = nn.MaxPool2d(kernel_size=3,ceil_mode=True)def forward(self,input):return self.maxpool2(input)# 实例化
l = Lgl()
output = l(input)
print(output)
torch.Size([5, 5])
torch.Size([1, 5, 5])
tensor([[[2., 3.],[5., 1.]]], dtype=torch.float64)
2,3,5,1 刚好符合ceil_mode=True时的情况
当设置ceil_mode=False时
示例代码如下:
import torch
from torch import nninput = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]],dtype=float) # 使用dtype将此矩阵的数字变为浮点型
# 准备的参数情况
print(input.shape) # torch.Size([5, 5])
# 进行reshape
input = torch.reshape(input,(1,5,5)) # 修改shape为chw
print(input.shape) # torch.Size([1, 5, 5])# 搭建神经网络并进行池化操作
class Lgl(nn.Module):def __init__(self):super(Lgl,self).__init__()self.maxpool2 = nn.MaxPool2d(kernel_size=3,ceil_mode=False)def forward(self,input):return self.maxpool2(input)# 实例化
l = Lgl()
output = l(input)
print(output)
torch.Size([5, 5])
torch.Size([1, 5, 5])
tensor([[[2.]]], dtype=torch.float64)
此时输出2,符合上述手算推导。
3.最大池化处理CIFAR10数据集图片
示例代码如下:
在这里插入代码片
进行最大池化前

进行最大池化后

相关文章:
Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用
系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...
Docker啥是数据持久化?
文章目录 数据持久化数据卷相关命令创建读写数据卷创建只读数据卷数据卷共享数据卷容器实现数据卷共享nginx实现数据卷共享nfs总结 Dockerfile持久化Dockerfile方式docker run总结 数据持久化 在容器层的 UnionFS(联合文件系统)中对文件/目录的任何修…...
CGAL 线段简化算法(2D)
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 线段简化是指:在减少一组折线中顶点数量的同时,尽可能保持整体形状的过程。CGAL中提供了一种迭代算法:通过从一条折线上移除顶点 q q q,迭代地将边 ( p , q...
在CentOS 7上挂载硬盘到系统的步骤及操作
目录 1:查询未挂载硬盘2:创建挂载目录3:检查磁盘是否被分区4:格式化硬盘5:挂载目录6:检查挂载状态7:设置开机自动挂载总结: 本文介绍了在CentOS 7上挂载硬盘到系统的详细步骤。通过确…...
螺旋矩阵(JS)
螺旋矩阵 题目 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。 示例 1: 输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2: 输入ÿ…...
C#常用数学插值法
目录 1、分段线性插值 2、三次样条插值 3、拉格朗日插值 (1)一元全区间不等距插值 (2)一元全区间等距插值 4、埃尔米特插值 (1)埃尔米特不等距插值 (2)埃尔米特等距插值 1、…...
ELK日志管理平台架构和使用说明
一、部署架构 二、服务注册 2.1 日志解析服务 服务名:日志解析服务(Logstash) 服务默认端口:9600 2.2 日志查询服务 服务名:日志查询服务(Kibana) 服务默认端口:5601 三、对接…...
抖音短视频seo矩阵系统源码开发部署技术分享
抖音短视频的SEO矩阵系统是一个非常重要的部分,它可以帮助视频更好地被搜索引擎识别和推荐。以下是一些关于开发和部署抖音短视频SEO矩阵系统的技术分享: 一、 抖音短视频SEO矩阵系统的技术分享: 关键词研究:在开发抖音短视频SEO矩…...
docker 部署一个单节点的rocketmq
拉取镜像 sudo docker pull rocketmqinc/rocketmq创建数据挂载目录 mkdir -p /docker/rocketmq/data/namesrv/logs mkdir -p /docker/rocketmq/data/namesrv/store mkdir -p /docker/rocketmq/data/broker/logs mkdir -p /docker/rocketmq/data/broker/store /docker/…...
MySQL优化
目录 一. 优化 SQL 查询语句 1.1. 分析慢查询日志 1.2. 优化 SQL 查询语句的性能 1.2.1 优化查询中的索引 1.2.2 减少表的连接(join) 1.2.3 优化查询语句中的过滤条件 1.2.4 避免使用SELECT * 1.2.5 优化存储过程和函数 1.2.6 使用缓存 二. 优化表结构…...
【C++】总结9
文章目录 C从源代码到可执行程序经过什么步骤静态链接和动态链接类的对象存储空间C的内存分区内存池在成员函数中调用delete this会出现什么问题?如果在类的析构函数中调用delete this,会发生什么? C从源代码到可执行程序经过什么步骤 预处理…...
C++报错 XX does not name a type;field `XX’ has incomplete type解决方案
C报错 XX does not name a type;field XX’ has incomplete type解决方案 两个C编译错误及解决办法–does not name a type和field XX’ has incomplete type 编译错误一:XX does not name a type 编译错误二:field XX’ has incomplete t…...
28.利用fminsearch、fminunc 求解最大利润问题(matlab程序)
1.简述 1.无约束(无条件)的最优化 fminunc函数 : - 可用于任意函数求最小值 - 统一求最小值问题 - 如求最大值问题: >对函数取相反数而变成求最小值问题,最后把函数值取反即为函数的最大值。 使用格式如下 1.必须预先把函数存…...
图像 检测 - FCOS: Fully Convolutional One-Stage Object Detection (ICCV 2019)
FCOS: Fully Convolutional One-Stage Object Detection - 全卷积一阶段目标检测(ICCV 2019) 摘要1. 引言2. 相关工作3. 我们的方法3.1 全卷积一阶目标检测器3.2 FCOS的FPN多级预测3.3 FCOS中心度 4. 实验4.1 消融研究4.1.1 FPN多级预测4.1.2 有无中心度…...
C# NDArray System.IO.FileLoadException报错原因分析
C# NDArray System.IO.FileLoadException 报错原因分析: 1.NuGet程序包版本有冲突 2.统一项目版本 1.打开解决方案NuGet程序包设置 2.查看是否有版本冲突 3.统一版本冲突...
快速响应,上门维修小程序让您享受无忧生活
随着科技的不断发展和智能手机的普及,上门维修小程序成为了现代人生活中越来越重要的一部分。上门维修小程序通过将维修服务与互联网相结合,为用户提供了更加便捷、高效的维修服务体验。下面将介绍上门维修小程序开发的优势。 提供便捷的预约方式&am…...
05、性能分析思路?
工具操作:包括压力工具、监控工具、剖析工具、调试工具。数值理解:包括上面工具中所有输出的数据。趋势分析、相关性分析、证据链分析:就是理解了工具产生的数值之后,还要把它们的逻辑关系想明白。这才是性能测试分析中最重要的一…...
【编程语言 · C语言 · calloc和realloc】
【编程语言 C语言 calloc和realloc】https://mp.weixin.qq.com/s?__bizMzg4NTE5MDAzOA&mid2247491544&idx1&sn72d8f9931cfa7ce7441a3248475ab619&chksmcfade321f8da6a374a5935bb46441a03a007c0589db6b8afa8c1991854d632a3201553e37b0b&payreadticketHGy…...
机器学习分布式框架ray运行pytorch实例
Ray是一个用于分布式计算的开源框架,它可以有效地实现并行化和分布式训练。下面是使用Ray来实现PyTorch的训练的概括性描述: 安装Ray:首先,需要在计算机上安装Ray。你可以通过pip或conda来安装Ray库。 准备数据:在使用…...
TypeScript 【type】关键字的进阶使用方式
导语: 在前面章节中,我们了解到 TS 中 type 这个关键字,常常被用作于,定义 类型别名,用来简化或复用复杂联合类型的时候使用。同时也了解到 为对象定义约束接口类型 的时候所使用的是 Interfaces。 其实对于前面&#…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
