当前位置: 首页 > news >正文

算法训练营第五十六天||● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

● 583. 两个字符串的删除操作

这道题涉及到两个字符串删除操作,注意递推公式,理解不到位,需要再次做

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。vector<vector<int>> dp(word1.size()+1,vector<int> (word2.size()+1,0));for(int i = 0;i<word1.size()+1;i++){dp[i][0]= i;}for(int j = 0;j<word2.size()+1;j++){dp[0][j] = j;}for(int i = 1;i<=word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1]==word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+2));}}}return dp[word1.size()][word2.size()];}
};

● 72. 编辑距离 

这道题和之前讲的三四道题类似,都是一步一步递增的,之后需要继续看

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1,0));for(int i = 0;i<=word1.size();i++) dp[i][0] = i;for(int j = 0;j<=word2.size();j++) dp[0][j] = j;for(int i = 1;i<=word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1]==word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]))+1;}}}return dp[word1.size()][word2.size()];}
};

● 编辑距离总结篇 

1.判断子序列

if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];

2.不同的子序列

if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {dp[i][j] = dp[i - 1][j];
}

3.两个字符串的删除操作

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
} else {dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}

4.编辑距离

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

相关文章:

算法训练营第五十六天||● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

● 583. 两个字符串的删除操作 这道题涉及到两个字符串删除操作&#xff0c;注意递推公式&#xff0c;理解不到位&#xff0c;需要再次做 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i][j]&#xff1a;以i-1为结尾的字符串word1&#xff0c;和以j-1位结尾…...

C语言每日一题:10.不使用+-*/实现加法+找到所有数组中消失的数。

题目一&#xff1a; 题目链接&#xff1a; 思路一&#xff1a; 1.两个数二进制之间进行异或如果不产生进位操作那么两个数的和就是就是两个数进行异或的结果。 举例&#xff1a;5&#xff08;0101&#xff09;2&#xff08;0010&#xff09;进行异或等于&#xff1a;7&#xf…...

LibreSSL SSL_connect: SSL_ERROR_SYSCALL in connection to github.com:443

1、问题&#xff1a; https://github.com/CocoaPods/Specs.git/&#xff1a;LibreSSL SSL_connect: SSL_ERROR_SYSCALL in connection to github.com:443的解决办法 出现这个问题的原因基本都是代理的问题&#xff1a; 只需要加上代理就可以了&#xff1a; #http代理 git conf…...

JS数组的详解与使用

什么是数组&#xff1f; 数组是一种有序的集合&#xff0c;有长度和索引&#xff0c;以及身上有许多的API方法 面试题&#xff1a;数组和伪数组的区别&#xff1a;数组和伪数组都有长度和索引&#xff0c;区别是数组身上有许多的API方法 而伪数组身上不存在这些API方法创建数组…...

c++ / python / java / PHP / SQL / Ruby / Objective-C / JavaScript 发展史

c发展史 C是由丹尼斯里奇和肯汤普森在1970年代早期开发的C语言的扩展。C最初被称为“C with Classes”&#xff0c;是在1980年代初期由比雅尼斯特劳斯特鲁普开发的。 1983年&#xff0c;斯特劳斯特鲁普将C with Classes重新命名为C。在1985年&#xff0c;C编译器的第一个版本被…...

Linux第一个小程序-进度条(缓冲区概念)

1.\r和\n C语言中有很多字符 a.可显字符 b.控制字符 对于回车其实有两个动作&#xff0c;首先换行&#xff0c;在将光标指向最左侧 \r &#xff1a;回车 \n&#xff1a;换行 下面举个例子&#xff1a; 把\n去掉会怎样 什么都没输出。为什么&#xff1f; 2.缓冲区概念 观察下两个…...

CentOS7环境安装tomcat

环境准备 由于是在练习&#xff0c;为了方便&#xff0c;我们可以 1.关闭防火墙 systemctl disable firewalld.service systemctl stop firewalld.service 2.关闭selinux 在/etc/selinux/config中&#xff0c;设置&#xff1a; SELINUXdisabled 3.准备jdk---》jdk-8u333-li…...

C# 中使用ValueTask优化异步方法

概要 我们在开发过程中&#xff0c;经常使用async的异步方法&#xff0c;但是有些时候&#xff0c;异步的方法中&#xff0c;可能包含一些同步的处理。本文主要介绍通过ValueTask这个struct&#xff0c;优化异步处理的方法性能。 代码及实现 有些时候我们会缓存一些数据在内…...

KVM创建新的虚拟机(图形化)

1.启动kvm管理器 [rootlocalhost ~]# virt-manager2.点击创建虚拟机 3.选择所需os安装镜像 4.选择合适的内存大小和CPU 5.创建所需磁盘 6.命名创建的虚拟机...

正则表达式在格式校验中的应用以及包装类的重要性

文章目录 正则表达式&#xff1a;做格式校验包装类&#xff1a;在基本数据类型与引用数据类型间的桥梁总结 在现代IT技术岗位的面试中&#xff0c;掌握正则表达式的应用以及理解包装类的重要性是非常有益的。这篇博客将围绕这两个主题展开&#xff0c;帮助读者更好地面对面试挑…...

Docker使用之java项目工程的部署

同样本文的基础建立在已在目标服务器&#xff08;以linux为示例&#xff09;上安装了docker&#xff0c;安装教程请移步度娘 若容器存在请先停止&#xff0c;在删除&#xff0c;然后删除镜像重新编译 //停止容器 sudo docker stop datatransfer//删除容器 sudo docker rm dat…...

3ds Max如何进行合成的反射光泽通道渲染

推荐&#xff1a; NSDT场景编辑器 助你快速搭建可二次开发的3D应用场景 1. 准备场景 步骤 1 打开 3ds Max。smart_phone.max打开已 随教程提供。 打开 3ds Max 步骤 2 按 M 打开材质编辑器。选择空材料 槽。单击漫射通道。它将打开材质/贴图浏览器窗口。选择位图&#xff0…...

114、Spring AOP是如何实现的?它和AspectJ有什么区别?

Spring AOP是如何实现的?它和AspectJ有什么区别? 一、AOP的理解1、spring aop:动态代理实现2、spring aop 和 AspectJ的区别3、小图一、AOP的理解 其实,AOP只是一种编程思想,表示面向切面编程,如果想实现这种思想,可以使用动态代理啊,第三方的框架 AspectJ啊等等。 1…...

正则表达式速通

简介 正则表达式&#xff0c;我们可以看作通配符的增强版&#xff0c;可以帮我们匹配指定规则的字符串&#xff0c;在计算机中应用广泛&#xff0c;比如说爬虫、网站的登录表单等。 原视频&#xff1a;https://www.bilibili.com/video/BV1da4y1p7iZ 学习正则表达式的常用工具…...

数据可视化(5)热力图及箱型图

1.热力图 #基本热力图 #imshow&#xff08;x&#xff09; #x&#xff0c;数据 x[[1,2],[3,4],[5,6],[7,8],[9,10]] plt.imshow(x) plt.show() #使用热力图分析学生的成绩 dfpd.read_excel(学生成绩表.xlsx) #:表示行号 截取数学到英语的列数 xdf.loc[:,"数学":英语].…...

React 组件通信-全面解析

父子组件通信 // 导入 import { useState } from "react";import "./App.scss"; import { defaultTodos } from "./components/module/contentData";// 子组件 const Module ({ id, done, text, onToggle, onDelData }) > {return (<div…...

“深入理解Spring Boot:快速构建微服务架构的利器“

标题&#xff1a;深入理解Spring Boot&#xff1a;快速构建微服务架构的利器 摘要&#xff1a;Spring Boot是一种基于Spring框架的开源项目&#xff0c;它通过自动化配置和约定优于配置的原则&#xff0c;使得开发者能够快速构建微服务架构。本文将深入介绍Spring Boot的特点和…...

SpringBoot超级详解

1.父工程的父工程 在父工程的父工程中的核心依赖&#xff0c;专门用来版本管理的 版本管理。 2.父工程 资源过滤问题&#xff0c;都帮解决了&#xff0c;什么配置文件&#xff0c;都已经配置好了&#xff0c;资源过滤问题是帮助&#xff0c;过滤解决让静态资源文件能够过滤到…...

手机的python怎么运行文件,python在手机上怎么运行

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;手机上的python怎么运行程序&#xff0c;手机的python怎么运行文件&#xff0c;今天让我们一起来看看吧&#xff01; 1、python程序怎么在手机上运行 python语言应用很广泛&#xff0c;自己也很喜欢使用它&#xff0c;其…...

RBAC三级树状菜单实现(从前端到后端)未完待续

1、表格设计 RBAC 2、前端路由 根据不同的用户id显示不同的菜单。 根据路由 3、多级菜单 展示所有权限&#xff0c;并且根据当前用户id展示它所属的角色的所有菜单。 前端树状展示 思路&#xff1a; 后端&#xff1a;传给前端map&#xff0c;map里1个是所有菜单&am…...

牛客网Verilog刷题——VL41

牛客网Verilog刷题——VL41 题目答案 题目 请设计一个可以实现任意小数分频的时钟分频器&#xff0c;比如说8.7分频的时钟信号&#xff0c;注意rst为低电平复位。提示&#xff1a;其实本质上是一个简单的数学问题&#xff0c;即如何使用最小公倍数得到时钟周期的分别频比。设小…...

大整数截取解决方法(java代码)

大整数截取解决方法&#xff08;java代码&#xff09; 描述输入描述输出描述输入示例输出示例前置知识&#xff1a;代码 解题思路来自这个博客&#xff1a;简单^不简单 https://blog.csdn.net/younger_china/article/details/126376374 描述 花花有一个很珍贵的数字串&#xf…...

Spring Boot使用@Async实现异步调用:自定义线程池

一、定义线程池 第一步&#xff0c;先在Spring Boot主类中定义一个线程池&#xff0c;比如&#xff1a; SpringBootApplication public class Application {public static void main(String[] args) {SpringApplication.run(Application.class, args);}EnableAsyncConfigurat…...

GFS 分布式文件系统

目录 一、GlusterFS 概述 1.2&#xff0e;GlusterFS特点 1.3&#xff0e;GlusterFS 术语 1.4GlusterFS 的工作流程 二、GlusterFS的卷类型 2.1分布式卷&#xff08;Distribute volume&#xff09; 2.1.1特点 2.2条带卷&#xff08;Stripe volume&#xff09; 2.2.1条…...

PHP-mysql学习笔记

如题 记录发送emoji数据无法正常显示的问题PHPMysql 记录 发送emoji数据无法正常显示的问题 问题描述 前端发送关于emoji的表情数据给php,php写入mysql php接收到了数据,但无法写入写入过后返回前端无法正常显示 PHP 在对应的pdd函数中设置字符集为utf8mb4 Mysql emoji数…...

AI技术快讯:清华开源ChatGLM2双语对话语言模型

ChatGLM2-6B是一个开源项目&#xff0c;提供了ChatGLM2-6B模型的代码和资源。根据提供的搜索结果&#xff0c;以下是对该项目的介绍&#xff1a; 论文&#xff1a;https://arxiv.org/pdf/2103.10360.pdf ChatGLM2-6B是一个开源的双语对话语言模型&#xff0c;是ChatGLM-6B模…...

网络基础知识

1、什么是链接? 链接是指两个设备之间的连接。它包括用于一个设备能够与另一个设备通信的电缆类型和协议。 2、OSI 参考模型的层次是什么? 有 7 个 OSI 层&#xff1a;物理层&#xff0c;数据链路层&#xff0c;网络层&#xff0c;传输层&#xff0c;会话层&#xff0c;表…...

【应用层】HTTPS协议详细介绍

文章目录 前言一、什么是"加密"二、常见的加密方式三、数据摘要&#xff08;数据指纹&#xff09;四、证书总结 前言 HTTPS也是一个应用层协议&#xff0c;是在HTTP协议的基础上引入了一个加密层&#xff0c;由于HTTP协议内容都是按照文本的方式明文传输的&#xff…...

【Tensorboard+Pytorch】使用注意事项

安装 tensorboard/tensorboardx版本需要与tensorflow保持一致&#xff08;本人使用2.2&#xff09; 调用 环境变量 在终端或CMD中使用时&#xff0c;常见报错“tensorboard 不是内部或外部命令……”&#xff0c;需要添加环境变量路径path。具体为tensorboard.exe所在目录(A…...

设计模式行为型——命令模式

目录 什么是命令模式 命令模式的实现 命令模式角色 命令模式类图 命令模式举例 命令模式代码实现 命令模式的特点 优点 缺点 使用场景 注意事项 什么是命令模式 命令模式&#xff08;Command Pattern&#xff09;是一种数据驱动的设计模式&#xff0c;它属…...