当前位置: 首页 > news >正文

算法训练营第五十六天||● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

● 583. 两个字符串的删除操作

这道题涉及到两个字符串删除操作,注意递推公式,理解不到位,需要再次做

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

class Solution {
public:int minDistance(string word1, string word2) {//dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。vector<vector<int>> dp(word1.size()+1,vector<int> (word2.size()+1,0));for(int i = 0;i<word1.size()+1;i++){dp[i][0]= i;}for(int j = 0;j<word2.size()+1;j++){dp[0][j] = j;}for(int i = 1;i<=word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1]==word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+2));}}}return dp[word1.size()][word2.size()];}
};

● 72. 编辑距离 

这道题和之前讲的三四道题类似,都是一步一步递增的,之后需要继续看

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1,0));for(int i = 0;i<=word1.size();i++) dp[i][0] = i;for(int j = 0;j<=word2.size();j++) dp[0][j] = j;for(int i = 1;i<=word1.size();i++){for(int j = 1;j<=word2.size();j++){if(word1[i-1]==word2[j-1]){dp[i][j] = dp[i-1][j-1];}else{dp[i][j] = min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]))+1;}}}return dp[word1.size()][word2.size()];}
};

● 编辑距离总结篇 

1.判断子序列

if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];

2.不同的子序列

if (s[i - 1] == t[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {dp[i][j] = dp[i - 1][j];
}

3.两个字符串的删除操作

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
} else {dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}

4.编辑距离

if (word1[i - 1] == word2[j - 1]) {dp[i][j] = dp[i - 1][j - 1];
}
else {dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

相关文章:

算法训练营第五十六天||● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

● 583. 两个字符串的删除操作 这道题涉及到两个字符串删除操作&#xff0c;注意递推公式&#xff0c;理解不到位&#xff0c;需要再次做 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i][j]&#xff1a;以i-1为结尾的字符串word1&#xff0c;和以j-1位结尾…...

C语言每日一题:10.不使用+-*/实现加法+找到所有数组中消失的数。

题目一&#xff1a; 题目链接&#xff1a; 思路一&#xff1a; 1.两个数二进制之间进行异或如果不产生进位操作那么两个数的和就是就是两个数进行异或的结果。 举例&#xff1a;5&#xff08;0101&#xff09;2&#xff08;0010&#xff09;进行异或等于&#xff1a;7&#xf…...

LibreSSL SSL_connect: SSL_ERROR_SYSCALL in connection to github.com:443

1、问题&#xff1a; https://github.com/CocoaPods/Specs.git/&#xff1a;LibreSSL SSL_connect: SSL_ERROR_SYSCALL in connection to github.com:443的解决办法 出现这个问题的原因基本都是代理的问题&#xff1a; 只需要加上代理就可以了&#xff1a; #http代理 git conf…...

JS数组的详解与使用

什么是数组&#xff1f; 数组是一种有序的集合&#xff0c;有长度和索引&#xff0c;以及身上有许多的API方法 面试题&#xff1a;数组和伪数组的区别&#xff1a;数组和伪数组都有长度和索引&#xff0c;区别是数组身上有许多的API方法 而伪数组身上不存在这些API方法创建数组…...

c++ / python / java / PHP / SQL / Ruby / Objective-C / JavaScript 发展史

c发展史 C是由丹尼斯里奇和肯汤普森在1970年代早期开发的C语言的扩展。C最初被称为“C with Classes”&#xff0c;是在1980年代初期由比雅尼斯特劳斯特鲁普开发的。 1983年&#xff0c;斯特劳斯特鲁普将C with Classes重新命名为C。在1985年&#xff0c;C编译器的第一个版本被…...

Linux第一个小程序-进度条(缓冲区概念)

1.\r和\n C语言中有很多字符 a.可显字符 b.控制字符 对于回车其实有两个动作&#xff0c;首先换行&#xff0c;在将光标指向最左侧 \r &#xff1a;回车 \n&#xff1a;换行 下面举个例子&#xff1a; 把\n去掉会怎样 什么都没输出。为什么&#xff1f; 2.缓冲区概念 观察下两个…...

CentOS7环境安装tomcat

环境准备 由于是在练习&#xff0c;为了方便&#xff0c;我们可以 1.关闭防火墙 systemctl disable firewalld.service systemctl stop firewalld.service 2.关闭selinux 在/etc/selinux/config中&#xff0c;设置&#xff1a; SELINUXdisabled 3.准备jdk---》jdk-8u333-li…...

C# 中使用ValueTask优化异步方法

概要 我们在开发过程中&#xff0c;经常使用async的异步方法&#xff0c;但是有些时候&#xff0c;异步的方法中&#xff0c;可能包含一些同步的处理。本文主要介绍通过ValueTask这个struct&#xff0c;优化异步处理的方法性能。 代码及实现 有些时候我们会缓存一些数据在内…...

KVM创建新的虚拟机(图形化)

1.启动kvm管理器 [rootlocalhost ~]# virt-manager2.点击创建虚拟机 3.选择所需os安装镜像 4.选择合适的内存大小和CPU 5.创建所需磁盘 6.命名创建的虚拟机...

正则表达式在格式校验中的应用以及包装类的重要性

文章目录 正则表达式&#xff1a;做格式校验包装类&#xff1a;在基本数据类型与引用数据类型间的桥梁总结 在现代IT技术岗位的面试中&#xff0c;掌握正则表达式的应用以及理解包装类的重要性是非常有益的。这篇博客将围绕这两个主题展开&#xff0c;帮助读者更好地面对面试挑…...

Docker使用之java项目工程的部署

同样本文的基础建立在已在目标服务器&#xff08;以linux为示例&#xff09;上安装了docker&#xff0c;安装教程请移步度娘 若容器存在请先停止&#xff0c;在删除&#xff0c;然后删除镜像重新编译 //停止容器 sudo docker stop datatransfer//删除容器 sudo docker rm dat…...

3ds Max如何进行合成的反射光泽通道渲染

推荐&#xff1a; NSDT场景编辑器 助你快速搭建可二次开发的3D应用场景 1. 准备场景 步骤 1 打开 3ds Max。smart_phone.max打开已 随教程提供。 打开 3ds Max 步骤 2 按 M 打开材质编辑器。选择空材料 槽。单击漫射通道。它将打开材质/贴图浏览器窗口。选择位图&#xff0…...

114、Spring AOP是如何实现的?它和AspectJ有什么区别?

Spring AOP是如何实现的?它和AspectJ有什么区别? 一、AOP的理解1、spring aop:动态代理实现2、spring aop 和 AspectJ的区别3、小图一、AOP的理解 其实,AOP只是一种编程思想,表示面向切面编程,如果想实现这种思想,可以使用动态代理啊,第三方的框架 AspectJ啊等等。 1…...

正则表达式速通

简介 正则表达式&#xff0c;我们可以看作通配符的增强版&#xff0c;可以帮我们匹配指定规则的字符串&#xff0c;在计算机中应用广泛&#xff0c;比如说爬虫、网站的登录表单等。 原视频&#xff1a;https://www.bilibili.com/video/BV1da4y1p7iZ 学习正则表达式的常用工具…...

数据可视化(5)热力图及箱型图

1.热力图 #基本热力图 #imshow&#xff08;x&#xff09; #x&#xff0c;数据 x[[1,2],[3,4],[5,6],[7,8],[9,10]] plt.imshow(x) plt.show() #使用热力图分析学生的成绩 dfpd.read_excel(学生成绩表.xlsx) #:表示行号 截取数学到英语的列数 xdf.loc[:,"数学":英语].…...

React 组件通信-全面解析

父子组件通信 // 导入 import { useState } from "react";import "./App.scss"; import { defaultTodos } from "./components/module/contentData";// 子组件 const Module ({ id, done, text, onToggle, onDelData }) > {return (<div…...

“深入理解Spring Boot:快速构建微服务架构的利器“

标题&#xff1a;深入理解Spring Boot&#xff1a;快速构建微服务架构的利器 摘要&#xff1a;Spring Boot是一种基于Spring框架的开源项目&#xff0c;它通过自动化配置和约定优于配置的原则&#xff0c;使得开发者能够快速构建微服务架构。本文将深入介绍Spring Boot的特点和…...

SpringBoot超级详解

1.父工程的父工程 在父工程的父工程中的核心依赖&#xff0c;专门用来版本管理的 版本管理。 2.父工程 资源过滤问题&#xff0c;都帮解决了&#xff0c;什么配置文件&#xff0c;都已经配置好了&#xff0c;资源过滤问题是帮助&#xff0c;过滤解决让静态资源文件能够过滤到…...

手机的python怎么运行文件,python在手机上怎么运行

大家好&#xff0c;小编来为大家解答以下问题&#xff0c;手机上的python怎么运行程序&#xff0c;手机的python怎么运行文件&#xff0c;今天让我们一起来看看吧&#xff01; 1、python程序怎么在手机上运行 python语言应用很广泛&#xff0c;自己也很喜欢使用它&#xff0c;其…...

RBAC三级树状菜单实现(从前端到后端)未完待续

1、表格设计 RBAC 2、前端路由 根据不同的用户id显示不同的菜单。 根据路由 3、多级菜单 展示所有权限&#xff0c;并且根据当前用户id展示它所属的角色的所有菜单。 前端树状展示 思路&#xff1a; 后端&#xff1a;传给前端map&#xff0c;map里1个是所有菜单&am…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...