当前位置: 首页 > news >正文

P5691 [NOI2001] 方程的解数

[NOI2001] 方程的解数

题目描述

已知一个 n n n 元高次方程:
∑ i = 1 n k i x i p i = 0 \sum\limits_{i=1}^n k_ix_i^{p_i} = 0 i=1nkixipi=0
其中: x 1 , x 2 , … , x n x_1, x_2, \dots ,x_n x1,x2,,xn 是未知数, k 1 , k 2 , … , k n k_1,k_2, \dots ,k_n k1,k2,,kn 是系数, p 1 , p 2 , … p n p_1,p_2,…p_n p1,p2,pn 是指数。且方程中的所有数均为整数。

假设未知数 x i ∈ [ 1 , m ] ( i ∈ [ 1 , n ] ) x_i \in [1,m] \space ( i \in [1,n]) xi[1,m] (i[1,n]),求这个方程的整数解的个数。

输入格式

第一行一个正整数 n n n,表示未知数个数。
第二行一个正整数 m m m
接下来 n n n 行,每行两个整数 k i , p i k_i,p_i ki,pi

输出格式

输出一行一个整数,表示方程解的个数。

样例 #1

样例输入 #1

3
150
1 2
-1 2
1 2

样例输出 #1

178

提示

【数据范围】

对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 6 1\le n \le 6 1n6 1 ≤ m ≤ 150 1\le m \le 150 1m150,且
∑ i = 1 n ∣ k i m p i ∣ < 2 31 \sum\limits_{i=1}^n |k_im^{p_i}| < 2^{31} i=1nkimpi<231
答案不超过 2 31 − 1 2^{31}-1 2311 p i ∈ N ∗ p_i \in \mathbb N^* piN

分析

数据较小,使用折半搜索,每个搜索搜一半,先枚举出每个可能性,再查找即可

代码

#include <bits/stdc++.h>
using namespace std;
const int M = 1e7;
int n, m, tot, ans;
int b[M];
int k[10], p[10];
void read() {cin >> n >> m;for (int i = 1; i <= n; i++) cin >> k[i] >> p[i];
}
int powm(int x, int b) {if (b == 0) return 1;int res = pow(x, b >> 1);if (b % 2 == 0) return res * res;return res * res * x;
}
void dfs1(int i,int sum) {if (i > n) { b[++tot] = -sum; return; }for (int x = 1; x <= m; x++) {int t = powm(x, p[i]) * k[i];dfs1(i + 1, sum + t);}
}
void dfs2(int i, int sum) {if (i > n / 2) {int res = upper_bound(b + 1, b + 1 + tot, sum) - lower_bound(b + 1, b + 1 + tot, sum);ans += res; return;}for (int x = 1; x <= m; x++) {int t = powm(x, p[i]) * k[i];dfs2(i + 1, sum + t);}
}
int main() {read();dfs1(n / 2 + 1, 0);sort(b + 1, b + 1 + tot);dfs2(1, 0);cout << ans;return 0;
}

分析

int powm(int x, int b) {if (b == 0) return 1;int res = pow(x, b >> 1);if (b % 2 == 0) return res * res;return res * res * x;
}

由于是高次方程,可以使用快速幂优化

void dfs1(int i,int sum) {if (i > n) { b[++tot] = -sum; return; }for (int x = 1; x <= m; x++) {int t = powm(x, p[i]) * k[i];dfs1(i + 1, sum + t);}
}

由于 x ∈ [ 1 , m ] x \in [1,m] x[1,m],所以枚举每个x的值,算出一半的答案,记录在数组中

void dfs2(int i, int sum) {if (i > n / 2) {int res = upper_bound(b + 1, b + 1 + tot, sum) - lower_bound(b + 1, b + 1 + tot, sum);ans += res; return;}for (int x = 1; x <= m; x++) {int t = powm(x, p[i]) * k[i];dfs2(i + 1, sum + t);}
}

与dfs1基本相同,但搜索完毕后记得统计答案数,更新ans即可

相关文章:

P5691 [NOI2001] 方程的解数

[NOI2001] 方程的解数 题目描述 已知一个 n n n 元高次方程&#xff1a; ∑ i 1 n k i x i p i 0 \sum\limits_{i1}^n k_ix_i^{p_i} 0 i1∑n​ki​xipi​​0 其中&#xff1a; x 1 , x 2 , … , x n x_1, x_2, \dots ,x_n x1​,x2​,…,xn​ 是未知数&#xff0c; k 1 ,…...

rust里用什么表示字节类型?

在Rust中&#xff0c;字节可以使用 u8 类型来表示。 u8 是一个无符号8位整数类型&#xff0c;可以表示0到255之间的值&#xff0c;对应于一个字节的范围。 以下是一个示例&#xff0c;演示了如何声明和使用字节&#xff1a; fn main() {let byte: u8 65; // 表示字母A的ASCI…...

CMake简介

文章目录 为什么需要头文件为什么 C 需要声明头文件 - 批量插入几行代码的硬核方式头文件进阶 - 递归地使用头文件 CMake什么是编译器多文件编译与链接CMake 的命令行调用为什么需要库&#xff08;library&#xff09;CMake 中的静态库与动态库CMake 中的子模块子模块的头文件如…...

[threejs]相机与坐标

搞清相机和坐标的关系在threejs初期很重要&#xff0c;否则有可能会出现写了代码&#xff0c;运行时一片漆黑的现象&#xff0c;这种情况就有可能是因为你相机没弄对。 先来看一下threejs中的坐标(世界坐标) 坐标轴好理解&#xff0c;大家只需要知道在three中不同颜色代表的轴…...

Qt信号与槽机制的基石-MOC详解

引入 上篇讲到了信号与槽就是实现的观察者模式&#xff0c;那具体如何生成映射表就是moc做的事情。 一、moc简介 1. moc的定义 moc 全称是 Meta-Object Compiler&#xff0c;也就是“元对象编译器”&#xff0c;它主要用于处理C源文件中的非标准C代码。Qt 程序在交由标准编…...

关于单体架构缓存刷新实现方案

背景 如果各位看官是分布式项目应该都采用分布式缓存了&#xff0c;例如redis等&#xff0c;分布式缓存不在本次讨论范围哈&#xff1b;我个人建议是&#xff0c;如果是用户量比较大&#xff0c;建议采用分布式缓存机制&#xff0c;后期可以很容易前后到分布式服务或微服务。 …...

洞悉安全现状,建设网络安全防护新体系

一、“网络攻防演练行动“介绍 国家在2016年发布《网络安全法》&#xff0c;出台网络安全攻防演练相关规定&#xff1a;关键信息基础设施的运营者应“制定网络安全事件应急预案&#xff0c;并定期进行演练”。同年“实战化网络攻防演练行动”成为惯例。由公安部牵头&#xff0…...

spring中怎么通过静态工厂和动态工厂获取对象以及怎么通过 FactoryBean 获取对象

&#x1f600;前言 本章是spring基于XML 配置bean系类中第4篇讲解spring中怎么通过静态工厂和动态工厂获取对象以及怎么通过 FactoryBean 获取对象 &#x1f3e0;个人主页&#xff1a;尘觉主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是尘觉&#xff0c;希望…...

三元组表实现矩阵相加(数据结构)

代码&#xff1a; 含注释&#xff0c;供参考 #include <stdio.h> #include <stdlib.h>typedef struct {int row,col,value;//分别为行数&#xff0c;列数&#xff0c;数值 } Triple; typedef struct {int len;//非零数值的个数Triple data[200]; } TSMatrix;void…...

ChinaJoy 2023微星雷鸟17游戏本震撼发布:搭载AMD锐龙9 7945HX首发8499元

ChinaJoy 2023展会中微星笔记本再次给大家带来惊喜&#xff0c;发布了搭载AMD移动端16大核的旗舰游戏本&#xff1a;雷鸟17&#xff0c;更重要的这样一款旗舰性能的游戏本&#xff0c;首发价8499元堪称当今游戏本市场中的“性价比爆款”&#xff01; 本着和玩家一同制霸游戏战场…...

各种运算符

算术运算符 1.双目运算符 */%&#xff1a;从左到右优先级依次降低 一些注意事项&#xff1a; 1若a/b都为整型那么结果也为整型&#xff0c;如果ab其中有一个为实型&#xff0c;结果则为实型 求余运算符注意事项&#xff1a; 1运算对象必须为整数 2运算结果的整数跟左边数字的…...

yolov3-tiny原理解析及代码分析

前言 从去年十一月份开始学习yolo神经网络用于目标识别的硬件实现&#xff0c;到现在已经六个月了。一个硬件工程师&#xff0c;C/C基础都差劲的很&#xff0c;对照着darknet作者的源码和网上东拼西凑的原理讲解&#xff0c;一点一点地摸索。刚开始进度很慢&#xff0c;每天都…...

深入了解Redis-实战篇-短信登录

深入了解Redis-实战篇-短信登录 一、故事背景二、知识点主要构成2.1、短信登录2.1.1、生成随机短信验证码引入maven依赖生成验证码 2.1.2、实现登录校验拦截器2.1.3、基于Redis实现短信登录2.1.3.1、发送验证码时存入Redis2.1.3.2、登录时校验验证码 2.1.4、解决状态登录刷新的…...

Mysql的锁

加锁的目的 对数据加锁是为了解决事务的隔离性问题&#xff0c;让事务之前相互不影响&#xff0c;每个事务进行操作的时候都必须先加上一把锁&#xff0c;防止其他事务同时操作数据。 事务的属性 &#xff08;ACID&#xff09; 原子性 一致性 隔离性 持久性 事务的隔离级别 锁…...

【EI/SCOPUS征稿】2023年算法、图像处理与机器视觉国际学术会议(AIPMV2023)

2023年算法、图像处理与机器视觉国际学术会议&#xff08;AIPMV2023&#xff09; 2023 International Conference on Algorithm, Image Processing and Machine Vision&#xff08;AIPMV2023&#xff09; 2023年算法、图像处理与机器视觉国际学术会议&#xff08;AIPMV2023&am…...

Go语言性能优化建议与pprof性能调优详解——结合博客项目实战

文章目录 性能优化建议Benchmark的使用slice优化预分配内存大内存未释放 map优化字符串处理优化结构体优化atomic包小结 pprof性能调优采集性能数据服务型应用go tool pprof命令项目调优分析修改main.go安装go-wrk命令行交互界面图形化火焰图 性能优化建议 简介&#xff1a; …...

K阶斐波那契数列(数据结构)

代码&#xff1a; 注意k阶斐波那契序列定义&#xff1a;第k和k1项为1&#xff0c;前k - 1项为0&#xff0c;从k项之后每一项都是前k项的和 例如&#xff1a;k2时&#xff0c;斐波那契序列为&#xff1a;0,1,1,2,3,5,8,13... k3时&#xff0c;斐波那契序列为&#xff1a;0,0,…...

【JavaEE】博客系统前后端交互

目录 一、准备工作 二、数据库的表设计 三、封装JDBC数据库操作 1、创建数据表对应的实体类 2、封装增删改查操作 四、前后端交互逻辑的实现 1、博客列表页 1.1、展示博客列表 1.2、博客详情页 1.3、登录页面 1.4、强制要求用户登录&#xff0c;检查用户的登录状态 …...

Redis 简介

文章目录 Redis 简介 Redis 简介 Redis&#xff08;Remote Dictionary Server&#xff09;&#xff0c;远程词典服务器&#xff0c;基于 C/S 架构&#xff0c;是一个基于内存的键值型 NoSQL 数据库&#xff0c;开源&#xff0c;遵守 BSD 协议&#xff0c;Redis 由 C语言 实现。…...

CS162 13-17 虚拟内存

起源 为啥我们需要虚拟内存-----------需求是啥&#xff1f; 可以给程序提供一个统一的视图&#xff0c;比如多个程序运行同一个代码段的话&#xff0c;同一个kernel&#xff0c;就可以直接共享 cpu眼里的虚拟内存 无限内存的假象 设计迭代过程 为啥这样设计&#xff1f; 一…...

接口自动化测试-Jmeter+ant+jenkins实战持续集成(详细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、下载安装配置J…...

最长连续序列——力扣128

文章目录 题目描述法一 哈希表 题目描述 法一 哈希表 用一个哈希表存储数组中的数&#xff0c;这样查看一个数是否存在即能优化至 O(1) 的时间复杂度 每次在哈希表中检查是否存在 x−1 即能判断是否需要跳过 int longestConsecutive(vector<int>& nums){unordered_s…...

uniapp app端 echarts 设置tooltip的formatter不生效问题以及解决办法

需求一&#xff1a; y轴数据处理不同数据增加不同单位 需求二&#xff1a; 自定义图表悬浮显示的内容 需求一&#xff1a;实现方式 在yAxis里面添加formatter yAxis: [{//y轴显示value的设置axisLabel: {show: true,formatter (value, index) > {var valueif (value > 1…...

Spring入门-技术简介、IOC技术、Bean、DI

前言 Spring是一个开源的项目&#xff0c;并不是单单的一个技术&#xff0c;发展至今已形成一种开发生态圈。也就是说我们可以完全使用Spring技术完成整个项目的构建、设计与开发。Spring是一个基于IOC和AOP的架构多层j2ee系统的架构。 SpringFramework&#xff1a;Spring框架…...

深度学习之反向传播

0 特别说明 0.1 学习视频源于&#xff1a;b站&#xff1a;刘二大人《PyTorch深度学习实践》 0.2 本章内容为自主学习总结内容&#xff0c;若有错误欢迎指正&#xff01; 1 forward&#xff08;前馈运算&#xff09;过程 通过输入相应的x和权重w&#xff08;可能涉及bais偏置…...

网络安全 Day23-mariadb数据库数据管理和备份

mariadb数据库数据管理和备份 1. 管理数据库中的库2. 管理库中的表3. 管理表中的字段(列)4. 管理表中的数据(行)5. 数据库数据备份与恢复 1. 管理数据库中的库 进入指定数据库: use 数据库名字库的增删改查 创建数据库: create database 数据库名字指定字符及创建数据库: CREA…...

Centos7 上安装 redis-dump 和redis-load 命令

一、安装rvm 1、安装GPG keys gpg2 --keyserver keyserver.ubuntu.com --recv-keys 409B6B1796C275462A1703113804BB82D39DC0E3 7D2BAF1CF37B13E2069D6956105BD0E739499BDBcurl -sSL http://rvm.io/mpapis.asc | gpg2 --import - curl -sSL http://rvm.io/pkuczynski.asc | g…...

【NLP PyTorch】字符级RNN循环网络模型姓氏对应国家分类(项目详解)

字符级RNN模型姓氏对应国家分类 1 序言1 数据来源与加载1.1 数据来源1.2 数据加载2 数据预处理2.1 单个字符数据处理标准2.2 单词的张量构造3 模型创建4 模型训练5 模型检验6 模型预测7 模型部署1 序言 本文的任务主要来源于PyTorch的官方教程,即给定各国人名的数据集,你需要…...

C++设计模式之责任链设计模式

C责任链设计模式 什么是责任链设计模式 责任链设计模式是一种行为型设计模式&#xff0c;它允许多个处理请求的对象串联起来&#xff0c;形成一个处理请求的链。每个对象都有机会处理请求&#xff0c;如果该对象不能处理请求&#xff0c;则将请求传递给链中的下一个对象。 该…...

《Java-SE-第二十三章》之单例模式

文章目录 单例模式概述饿汉模式懒汉模式单线程版懒汉单例多线程版枚举实现单例 单例模式概述 单例模式是设计模式中的一种,其作用能保证某个类在程序中只存在唯一一份实例,而不会创建多份实例。单例模式具体的实现方式, 分成 “饿汉” 和 “懒汉” 两种.。饿汉模式中的饿不并不…...