当前位置: 首页 > news >正文

深度学习之用PyTorch实现线性回归

代码

# 调用库
import torch# 数据准备
x_data = torch.Tensor([[1.0], [2.0], [3.0]])  # 训练集输入值
y_data = torch.Tensor([[2.0], [4.0], [6.0]])  # 训练集输出值# 定义线性回归模型
class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self).__init__()  # 调用父类构造函数self.linear = torch.nn.Linear(1, 1)  # 实例化torch库nn模块的Linear类def forward(self, x):"""前馈运算:param x: 输入值:return: 线性回归预测结果"""y_pred = self.linear(x)return y_predmodel = LinearModel()  # 实例化LinearModel类criterion = torch.nn.MSELoss(size_average=False)  # 损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 优化器——梯度下降SGD
# optimizer = torch.optim.Adam(model.parameters(), lr=0.01)  # 优化器——Adam
# optimizer = torch.optim.Adamax(model.parameters(), lr=0.01)  # 优化器——Adamax# 训练过程
for epoch in range(1000):  # epoch:训练轮次y_pred = model(x_data)loss = criterion(y_pred, y_data)print(epoch, loss.item())optimizer.zero_grad()  # 梯度归零loss.backward()  # 反向传播optimizer.step()  # 权重自动更新print("w = ", model.linear.weight.item())
print("b = ", model.linear.bias.item())# 预测过程
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print("y_pred = ", y_test.data)

结果

1 不同epoch结果

1.1 epoch = 100时

1.2 epoch = 1000时

 

 2 不同优化器

2.1 Adam优化器

 

 2.2 Adamax优化器 

 

3 不同学习率(梯度下降)

3.1 lr = 0.05

 3.2 lr = 0.1(loss函数结果发散)

遇见的问题

1 代码问题(已解决)

1.1 问题

 1.2 解决办法

 2 关于神经网络

代码中model.parameters()函数保存的是Weights和Bais参数的值。但是对于其他网络(非线性)来说这个函数可以用吗,里面也是保存的w和b吗?

相关文章:

深度学习之用PyTorch实现线性回归

代码 # 调用库 import torch# 数据准备 x_data torch.Tensor([[1.0], [2.0], [3.0]]) # 训练集输入值 y_data torch.Tensor([[2.0], [4.0], [6.0]]) # 训练集输出值# 定义线性回归模型 class LinearModel(torch.nn.Module):def __init__(self):super(LinearModel, self)._…...

45.248.11.X服务器防火墙是什么,具有什么作用

防火墙是一种网络安全设备或软件,服务器防火墙的作用主要是在服务器和外部网络之间起到一个安全屏障的作用,保护计算机网络免受未经授权的访问、恶意攻击或不良网络流量的影响,保护服务器免受恶意攻击和非法访问。它具有以下功能:…...

如何以无服务器方式运行 Go 应用程序

Go编程语言一直以来都对构建REST API提供了丰富的支持。这包括一个出色的标准库(net/HTTP),以及许多流行的包,如Gorilla mux、Gin、Negroni、Echo、Fiber等。使用AWS Lambda Go运行时,我们可以使用Go构建AWS Lambda函数…...

小程序商城系统的开发方式及优缺点分析

小程序商城系统是一种新型的电子商务平台,它通过小程序的形式为商家提供了一种全新的销售渠道,同时也为消费者提供了一种便捷的购物体验。小程序商城系统具有低成本、快速上线、易于维护等特点,因此在市场上受到了广泛的关注和应用。这里就小…...

[数据集][目标检测]城市道路井盖破损丢失目标检测1377张

数据集制作单位:未来自主研究中心(FIRC) 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1377 标注数量(xml文件个数):1377 标注类别数&a…...

【Spring Cloud 三】Eureka服务注册与服务发现

系列文章目录 【Spring Cloud一】微服务基本知识 Eureka服务注册与服务发现 系列文章目录前言一、什么是Eureka?二、为什么要有服务注册发现中心?三、Eureka的特性四、搭建Eureka单机版4.1Eureka服务端项目代码pom文件配置文件启动类启动项目查看效果 E…...

WPF实战学习笔记21-自定义首页添加对话服务

自定义首页添加对话服务 定义接口与实现 添加自定义添加对话框接口 添加文件:Mytodo.Dialog.IDialogHostAware.cs using Prism.Commands; using Prism.Services.Dialogs; using System; using System.Collections.Generic; using System.Linq; using System.Tex…...

AngularJS学习(一)

目录 1. 引入 AngularJS2. 创建一个 AngularJS 应用3. 控制器(Controller)4. 模型(Model)5. 视图(View)6. 指令(Directive)7. 过滤器(Filter)8. 服务&#xf…...

918. 环形子数组的最大和

918. 环形子数组的最大和 给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。 环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i 1) % n] , nums[i] 的前一个元素是…...

AI算法图形化编程加持|OPT(奥普特)智能相机轻松适应各类检测任务

OPT(奥普特)基于SciVision视觉开发包,全新推出多功能一体化智能相机,采用图形化编程设计,操作简单、易用;不仅有上百种视觉检测算法加持,还支持深度学习功能,能轻松应对计数、定位、…...

C语言文件指针设置偏移量--fseek

一、fseek fseek是设置文件指针偏移量的函数,具体传参格式为: int fseek(FILE *stream, long int offset, int whence) 返回一个整数,其中: 1、stream是指向文件的指针 2、offset是偏移量,一般是指相对于whence的便…...

快速消除视频的原声的技巧分享

网络上下载的视频都会有视频原声或者背景音乐,如果不喜欢并且想更换新的BGM要怎么操作呢?今天小编就来教你如何快速给多个视频更换新的BGM,很简单,只需要将原视频的原声快速消音同时添加新的背景音频就行,一起来看看详…...

lua脚本实现Redis令牌桶限流

背景 令牌桶限流是一种常见的流量控制算法,用于控制系统的请求处理速率,防止系统过载。在令牌桶限流算法中,可以将请求看作是令牌,而令牌桶则表示系统的处理能力。系统在处理请求时,首先需要从令牌桶中获取令牌&#…...

最新 23 届计算机校招薪资汇总

24 届的秋招提前批已经开始了,比如米哈游、oppoe、tplink 等公司都已经录取开启提前批。 像腾讯、字节、阿里等一线大厂的话,根据往年的情况,估计是 7月下-8 月初。 所以今年参加秋招的同学,要抓紧复习了。 提前批通常就持续不到…...

BUU CODE REVIEW 1

BUU CODE REVIEW 1 考点&#xff1a;PHP变量引用 源码直接给了 <?phphighlight_file(__FILE__);class BUU {public $correct "";public $input "";public function __destruct() {try {$this->correct base64_encode(uniqid());if($this->c…...

django使用ztree实现树状结构效果,子节点实现动态加载(l懒加载)

一、实现的效果 由于最近项目中需要实现树状结构的效果,考虑到ztree这个组件大家用的比较多,因此打算在django项目中集成ztree来实现树状的效果。最终实现的示例效果如下: 点击父节点,如果有子节点,则从后台动态请求数据,然后显示出子节点的数据。 二、实现思路 …...

认识springboot 之 了解它的日志 -4

前言 本篇介绍springboot的日志&#xff0c;如何认识日志&#xff0c;如何进行日志持久化&#xff0c;通过日志级别判断信息&#xff0c;了解Lombok插件的使用&#xff0c;通过Lombok自带注释更简洁的来完成日志打印&#xff0c;如有错误&#xff0c;请在评论区指正&#xff0…...

关于大规模数据处理的解决方案

大规模数据处理已经成为了现代商业和科学的核心。随着互联网普及和物联网技术的发展&#xff0c;越来越多的数据被收集和存储&#xff0c;这些数据包含了各种各样的信息&#xff0c;例如客户行为、传感器读数、社交媒体活动等等。这些数据的数量和复杂性已经超出了传统数据处理…...

免费快速下载省市区县行政区的Shp数据

摘要&#xff1a;一般非专业的GIS应用通常会用到省市等行政区区划边界空间数据做分析&#xff0c;本文简单介绍了如何在互联网上下载省&#xff0c;市&#xff0c;区县的shp格式空间边界数据&#xff0c;并介绍了一个好用的在线数据转换工具&#xff0c;并且开源。 一、首先&am…...

MAC下配置android-sdk

MAC下配置android-sdk 1、前提2、brew安装3、配置sdk 1、前提 安装好JDK安装brew 2、brew安装 brew install android-sdk brew install android-platform-tools检查是否安装成功 android3、配置sdk brew list android-sdk进入配置文件 sudo vim ~/.zshrc配置 export AND…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...