当前位置: 首页 > news >正文

基于传统检测算法hog+svm实现图像多分类

直接上效果图:

 

 代码仓库和视频演示b站视频005期:

到此一游7758258的个人空间-到此一游7758258个人主页-哔哩哔哩视频

代码展示:

数据集在datasets文件夹下

运行01train.py即可训练

训练结束后会保存模型在本地

运行02pyqt.py会有一个可视化的界面,通过点击按钮加载图片识别。

 

科普相关知识:

传统图像分类检测算法通常包括以下几种:

  1. 支持向量机(SVM):SVM是一种监督学习算法,用于二分类和多分类问题。它通过找到一个最优超平面来将不同类别的数据分开。

  2. k最近邻(K-Nearest Neighbors,KNN):KNN是一种简单有效的非参数算法。对于一个未知样本,KNN通过计算其与训练集中最近的k个样本的距离,然后根据这些近邻样本的标签来进行分类。

  3. 决策树(Decision Trees):决策树是一种树状结构的分类模型,通过在特征空间中递归划分数据,最终将数据分到不同的类别。

  4. 随机森林(Random Forest):随机森林是一种集成学习方法,它结合多个决策树来进行分类,并通过投票或平均等方式得出最终结果。

  5. AdaBoost(自适应增强算法):AdaBoost是一种集成学习算法,通过迭代地训练一系列弱分类器,并根据它们的表现进行加权,从而得到一个强分类器。

  6. 感知器(Perceptron):感知器是一种最早的神经网络模型,用于二分类问题。它通过对输入进行加权求和,并经过一个阈值函数来进行分类。

  7. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT):SIFT是一种用于图像特征提取的算法,通过寻找图像中的局部特征点,并提取与尺度无关的特征描述符。

  8. 主成分分析(Principal Component Analysis,PCA):PCA是一种降维算法,可以用于将高维特征转换为低维特征,以减少数据的复杂性。

这些传统图像分类检测算法在一些简单的图像分类任务上表现良好,但随着深度学习的发展,卷积神经网络(CNN)等深度学习算法在图像分类领域取得了显著的进展,特别是在大规模和复杂数据集上的分类任务中。

PyQt 是一个用于开发图形用户界面(GUI)的Python绑定库。它将Qt框架与Python编程语言结合起来,使开发者可以使用Python语言创建功能强大、跨平台的GUI应用程序。

Qt 是一种流行的C++开发框架,提供了丰富的GUI组件和工具,可用于构建各种类型的应用程序,包括桌面应用程序、移动应用程序和嵌入式系统。PyQt允许开发者通过简单而直观的Python语法来利用Qt的功能,从而加快应用程序的开发速度。

PyQt提供了一系列模块和类,使开发者能够创建窗口、按钮、文本框、列表框等各种GUI元素,并为这些元素添加交互性和事件处理。此外,PyQt还支持多线程、数据库连接、网络通信等功能,使开发者能够构建复杂的GUI应用程序。

总之,PyQt是一个强大的工具,使开发者能够使用Python语言开发跨平台的GUI应用程序,并利用Qt框架提供的丰富功能和工具。

HOG(Histogram of Oriented Gradients)是一种计算机视觉中常用的特征描述子。它被广泛应用于目标检测和人体姿态估计等任务。

HOG特征描述子通过对图像进行局部梯度计算,提取了图像中不同区域的方向梯度信息。具体而言,HOG将图像划分为小的局部块,并计算每个块内像素点的梯度方向和强度。然后,将这些局部块的梯度方向信息统计到直方图中,形成一个特征向量表示该块的特征。最后,将所有块的特征向量拼接在一起,形成整个图像的HOG特征描述子。

HOG特征具有以下特点:

  • 对于光照变化、阴影以及一定程度的几何变换具有一定的鲁棒性。
  • 通过统计局部块的梯度方向信息,能够捕捉到物体的边缘和纹理特征。
  • HOG特征描述子维度相对较低,便于快速计算和存储。

在目标检测领域,HOG特征通常与机器学习算法(例如支持向量机)结合使用,通过训练模型来识别图像中的目标。HOG特征在人体检测方面表现良好,尤其在行人检测上应用广泛,并为其他目标检测任务提供了一种有效的特征表示方法。

SVM(Support Vector Machine)是一种常见的监督学习算法,广泛应用于模式分类和回归任务中。

SVM的目标是找到一个最优的超平面,将不同类别的样本点在特征空间中尽可能地分开。超平面可以被看作是一个决策边界,用于对新的未标记数据进行分类。SVM通过选择支持向量(距离超平面最近的训练样本点)来确定分类边界,从而实现对样本的有效分类。

SVM具有以下特点:

  • 可以处理高维特征空间,并且在处理高维数据时表现良好。
  • 通过引入核函数,可以将低维非线性可分问题映射到高维空间进行线性分类,从而提高分类准确率。
  • SVM具有较强的鲁棒性,对于一些噪声和异常值具有一定的容忍度。
  • 在训练过程中,SVM只使用支持向量,大大减少了存储和计算开销。

SVM的应用包括图像分类、文本分类、生物信息学、人脸识别等领域。它在机器学习中被认为是一种经典的方法,因其稳定性和分类性能而备受关注。

相关文章:

基于传统检测算法hog+svm实现图像多分类

直接上效果图: 代码仓库和视频演示b站视频005期: 到此一游7758258的个人空间-到此一游7758258个人主页-哔哩哔哩视频 代码展示: 数据集在datasets文件夹下 运行01train.py即可训练 训练结束后会保存模型在本地 运行02pyqt.py会有一个可视化…...

slice() 方法,使用 concat() 方法, [...originalArray],find(filter),移出类名 removeAttr()

在JavaScript中,在 JavaScript 中,clone 不是一个原生的数组方法。但是你可以使用其他方法来实现克隆数组的功能。 以下是几种常见的克隆数组的方法: 使用 slice() 方法: const originalArray [1, 2, 3]; const clonedArray …...

Zabbix报警机制、配置钉钉机器人、自动发现、主动监控概述、配置主动监控、zabbix拓扑图、nginx监控实例

day02 day02配置告警用户数超过50,发送告警邮件实施验证告警配置配置钉钉机器人告警创建钉钉机器人编写脚本并测试添加报警媒介类型为用户添加报警媒介创建触发器创建动作验证自动发现配置自动发现主动监控配置web2使用主动监控修改配置文件,只使用主动…...

ELK日志分析系统概述及部署

ELK 平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kibana 三个开源工具配合使用,完成更强大的用户对日志的查询、排序、统计需求。 一、ELK概述 1、组件说明 ①ElasticSearch ElasticSearch是基于Lucene(一个全文…...

HTML拖拽

拖拽的流程:鼠标按下(mousedown)→鼠标移动(mousemove)→鼠标松开(moveup) 需要理解的几个api: clientX/clientY: 相对于浏览器视窗内的位置坐标(不包括浏览器收藏夹和顶部网址部分)pageX/pageY: 该属性会考虑滚动,如…...

【vue】 vue2 监听滚动条滚动事件

代码 直接上代码&#xff0c;vue单文件 index.vue <template><div class"content" scroll"onScroll"><p>内容</p><p>内容</p><p>内容</p><p>内容</p><p>内容</p><p>内容…...

k8s目录

k8s笔记目录&#xff0c;更新中... 一 概念篇 1.1概念介绍 1.2 pod 1.3 controller 1.3.1 deployment 1.3.2 statefulset 1.3.3 daemonset 1.3.4 job和cronJob1 1.4 serivce和ingress 1.5 配置与存储 1.5.1 configMap 1.5.2 secret 1.5.3 持久化存储 1.5.4 pv和…...

设计模式行为型——解释器模式

目录 什么是解释器模式 解释器模式的实现 解释器模式角色 解释器模式类图 解释器模式举例 解释器模式代码实现 解释器模式的特点 优点 缺点 使用场景 注意事项 实际应用 什么是解释器模式 解释器模式&#xff08;Interpreter Pattern&#xff09;属于行为型模式&…...

使用 Webpack 优化前端开发流程

在现代前端开发中&#xff0c;构建工具的选择和优化流程的设计至关重要。Webpack 是一个功能强大的前端构建工具&#xff0c;能够优化我们的开发流程&#xff0c;提高开发效率和项目性能。本文将介绍如何使用 Webpack 来优化前端开发流程。 代码优化和资源管理也是前端项目中不…...

mysql的分库分表脚本

目录 一.分库分表优点二.过程思路脚本实现验证 一.分库分表优点 1&#xff0c;提高系统的可扩展性和性能&#xff1a;通过分库分表&#xff0c;可以将数据分布在多个节点上&#xff0c;从而提高系统的负载能力和处理性能。 2&#xff0c;精确备份和恢复&#xff1a;分库分表备…...

JavaEE初阶之文件操作 —— IO

目录 一、认识文件 1.1认识文件 1.2树型结构组织 和 目录 1.3文件路径(Path) 1.4其他知识 二、Java 中操作文件 2.1File 概述 2.2代码示例 三、文件内容的读写 —— 数据流 3.1InputStream 概述 ​3.2FileInputStream 概述 3.3代码示例 3.4利用 Scanner 进行字…...

客户端代码 VS 服务端代码 简述

客户端代码和服务端代码是计算机网络交互中的两种重要代码类型。在计算机网络中&#xff0c;客户端和服务器是一对设备模型&#xff0c;客户端&#xff08;Client&#xff09;负责向服务器发送请求&#xff0c;服务器&#xff08;Server&#xff09;负责处理请求并返回给客户端…...

【娱乐圈明星知识图谱2】信息抽取

目录 1. 项目介绍 2. 信息抽取介绍 3. ChatGPT 信息抽取代码实战 4. 信息抽取主逻辑 5. 项目源码 1. 项目介绍 利用爬虫项目中爬取的大量信息 【娱乐圈明星知识图谱1】百科爬虫_Encarta1993的博客-CSDN博客娱乐圈明星知识图谱百度百科爬虫百度百科爬虫百度百科爬虫百度百…...

C++ rand的用法

C rand的用法 rand()介绍srand()介绍产生随机数的用法产生一定范围随机数的通用表示公式 我们知道 rand() 函数可以用来产生随机数&#xff0c;但是这不是真正意义上的随机数&#xff0c;是一个伪随机数&#xff0c;是根据一个数&#xff08;我们可以称它为种子&#xff09;为基…...

element时间选择器的默认值

概览&#xff1a;vue使用element组件&#xff0c;需要给时间选择器设置默认值&#xff0c;场景一&#xff1a;默认时间选择器&#xff0c;场景二&#xff1a;时间范围选择器&#xff0c;开始时间和结束时间。 一、默认时间选择器 实现思路&#xff1a; element组件的v-model绑…...

fiddler过滤器

1、fiddler Fiddler是一个免费、强大、跨平台的HTTP抓包工具。下载地址 2、为什么适用过滤器 不适用过滤器时&#xff0c;所有的报文都会被抓包。 我们在开发或测试时&#xff0c;只需要抓包某个域名下的报文 &#xff0c;以“www.baidu.com”为例&#xff0c;不设置过滤器&…...

面试必考精华版Leetcode2130.链表最大孪生和

题目&#xff1a; 代码&#xff08;首刷看解析 day22&#xff09;&#xff1a; class Solution { public:int pairSum(ListNode* head) {ListNode* slowhead;ListNode* fasthead->next;while(fast->next!nullptr){slowslow->next;fastfast->next->next;}//反转…...

qemu kvm 新建虚拟机

开始菜单打开虚拟机管理器...

Charles抓包工具使用(一)(macOS)

Fiddler抓包 | 竟然有这些骚操作&#xff0c;太神奇了&#xff1f; Fiddler响应拦截数据篡改&#xff0c;实现特殊场景深度测试&#xff08;一&#xff09; 利用Fiddler抓包调试工具&#xff0c;实现mock数据特殊场景深度测试&#xff08;二&#xff09; 利用Fiddler抓包调试工…...

2023年8月美团外卖3-18元红包优惠券天天领取活动日历及美团外卖红包领取使用

2023年8月美团外卖3-18元红包天天领取活动日历 根据上图美团外卖红包领取活动时间表以下时间可以天天领取3-18元美团外卖红包优惠券&#xff1a; 1、2023年8月18日 可领取美团外卖18元神券节红包&#xff1b; 2、2023年8月每周六、周日每天可领取12元美团外卖节红包&#xff…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...