Pytorch个人学习记录总结 10
目录
优化器
优化器
官方文档地址:torch.optimhttps://pytorch.org/docs/stable/optim.html
Debug过程中查看的grad所在的位置:
model --> Protected Atributes --> _modules --> ‘model’ --> Protected Atributes --> _modules --> ‘0’(任选一个conv层) --> weight(查看weight下的data和grad的变化)
简易训练代码,添加了Loss、Optim。
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torchvision.transforms import transformsdataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.model = Sequential(Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x): # 模型前向传播return self.model(x)model = Model() # 定义模型
loss_cross = nn.CrossEntropyLoss() # 定义损失函数
optim = torch.optim.SGD(model.parameters(), lr=0.01) # lr不能过大或者过小。刚开始的lr可设置得较大一点,后面再对lr进行调节
len = len(dataloader)for epoch in range(20):total_loss = 0.0for imgs, targets in dataloader:outputs = model(imgs)res_loss = loss_cross(outputs, targets)optim.zero_grad() # 优化器对model中的每一个参数进行梯度清零res_loss.backward() # 损失反向传播optim.step() # 对model参数开始调优total_loss += res_lossprint('epoch:{}\ttotal_loss:{}\tmean_loss:{}.'.format(epoch, total_loss, total_loss / len))
# epoch:0 total_loss:9374.806640625 mean_loss:1.8749613761901855.
# epoch:1 total_loss:7721.240234375 mean_loss:1.544248104095459.
# epoch:2 total_loss:6830.775390625 mean_loss:1.3661550283432007.
相关文章:

Pytorch个人学习记录总结 10
目录 优化器 优化器 官方文档地址:torch.optimhttps://pytorch.org/docs/stable/optim.html Debug过程中查看的grad所在的位置: model --> Protected Atributes --> _modules --> ‘model’ --> Protected Atributes --> _modules -…...

18款奔驰S320升级后排座椅加热功能,提升后排乘坐舒适性
奔驰座椅加热就简单多了,是在原车座椅海绵表面安装一层加热垫,加热垫里面是加热丝,通过电机热的原理,快速升温,把热量传递给车主。 奔驰的座椅加热系统是通过车门按键来控制,3档调节,温度从低到…...
Vue中的插值表达式
Vue中的插值表达式(Interpolation)用于将数据动态绑定到HTML模板中。它的主要作用是在模板中直接显示变量的值,并实现数据的双向绑定。以下是插值表达式的一些作用: 1.变量展示:插值表达式允许将Vue实例中的数据直接显…...
背包问题(模板)
目录 01背包: 完全背包: 多重背包(范围0-100): 混合背包: 分组背包: 二维费用的背包问题: 背包问题求方案数: 01背包: 从最大容量开始遍历到当前&…...

docker容器创建私有仓库(第三篇)
目录 六、创建私有仓库 七、Docker资源限制 7.1、CPU使用率 7.2、CPU共享比例 7.3、CPU周期限制 7.4、CPU核心限制 7.5、CPU 配额控制参数的混合案例 7.6、内存限制 7.7、Block IO 的限制 7.8、限制bps 和iops 8、Docker数据持久化 8.1、数据持久化介绍 8.2、Volum…...
Eureka 学习笔记4:客户端 DiscoveryClient
版本 awsVersion ‘1.11.277’ DiscoveryClient # cacheRefreshTask // 配置shouldFetchRegistry if (clientConfig.shouldFetchRegistry()) {// 配置client.refresh.intervalint registryFetchIntervalSeconds clientConfig.getRegistryFetchIntervalSeconds();// 配置expB…...

【方法】PDF可以转换成Word文档吗?如何操作?
很多人喜欢在工作中使用PDF,因为PDF格式可以准确地保留文档的原始格式,比如字体、图像、布局和颜色等。 但如果编辑文档的话,PDF还是没有Word文档方便。那可以将PDF转换成Word格式,再来编辑吗?如何操作呢?…...

AlphaControls crack
AlphaControls crack AlphaControls-一组通用和一些独特的组件,支持皮肤(AlphaSkins),并具有一些附加功能。所有皮肤元素都可以有自己的属性,用于高级绘制渐变、逼真的框架、半透明和模糊的阴影。图形功能实时生成所有计算和绘图。添加了用于…...

论文笔记——Influence Maximization in Undirected Networks
Influence Maximization in Undirected Networks ContributionMotivationPreliminariesNotations Main resultsReduction to Balanced Optimal InstancesProving Theorem 3.1 for Balanced Optimal Instances Contribution 好久没发paper笔记了,这篇比较偏理论&…...

Stable Diffusion - SDXL 1.0 全部样式设计与艺术家风格的配置与提示词
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132072482 来源于 Anna Dittmann 安娜迪特曼,艺术家风格的图像,融合幻想、数字艺术、纹理等样式。 SDXL 是 Stable Diffus…...

Hbase pe 压测 OOM问题解决
说明:本人使用CDH虚拟机搭建了Hbase集群,但是在压测的时发现线程多个的时候直接回OOM,记录一下 执行命令 hbase pe --nomapred --oneContrue --tablerw_test_1 --rows1000 --valueSize100 --compressSNAPPY --presplit10 --autoFlushtrue randomWrite …...
问题解决——datagrip远程连接虚拟机中ubuntu的mysql失败
问题解决——datagrid远程连接虚拟机中ubuntu的mysql失败 情况:datagrip远程win11系统下虚拟机里的ubuntu20.04的mysql,连接失败。 1 如果是防火墙没开放3306端口,则需要开放:linux 3306端口无法连接 无法通过防火墙的解决办法 …...
【晚风摇叶之随机密码生成器】随机生成密码
需求:想要生成位数不低于16的随机密码,而且要包含大小写字母,数字,特殊字符四类 用别人的在线生成器,生成的密码有个别没有数字或者特殊字符,验证方式就是,生成几个长度是4的密码,看…...
Spring Cache
什么是Spring Cache? Spring Cache是Spring框架的一个模块,它提供了对应用程序方法级别的缓存支持。通过使用Spring Cache,您可以在方法的结果被计算后,将其缓存起来,从而避免相同输入导致的重复计算。 Spring Cache…...

em3288 linux_4.19 sd卡调试
默认配置,根据实际配置即可。...
前端vue uni-app cc-countdown倒计时组件
随着技术的不断发展,传统的开发方式使得系统的复杂度越来越高。在传统开发过程中,一个小小的改动或者一个小功能的增加可能会导致整体逻辑的修改,造成牵一发而动全身的情况。为了解决这个问题,我们采用了组件化的开发模式。通过组…...

fifo读写的数据个数
fifo IP核设置读写个数 如果不勾选精确值,则统计的当前写入和待读出的数据为估计值,可能会相差2个左右。且fifo设计的wr_data_count. wr_data_count:当前的fifo中剩余已经写入的数据。 rd_data_count:当前的fifo中剩余可以读出…...

Java之Map接口
文章目录 简述Map中key-value特点 Map接口的常用方法Map的主要实现类:HashMapHashMap概述 Map实现类之二:LinkedHashMapMap实现类之三:TreeMapMap实现类之四:Hashtable(古老实现类)Map实现类之五࿱…...
windows系统中的命令行可以用python,pip等命令(已在系统中添加过python环境变量),但是pycharm的terminal中无法使用。
如果你已经在Windows系统中添加了Python环境变量,那么在命令行中使用python和pip命令应该是没有问题的。但是在PyCharm的Terminal中无法使用这些命令,可能是因为PyCharm的Terminal使用的是自己的虚拟环境,而不是系统环境。 你可以尝试在PyCh…...
编译 OneFlow 模型
本篇文章译自英文文档 Compile OneFlow Models tvm 0.14.dev0 documentation 作者是 BBuf (Xiaoyu Zhang) GitHub 更多 TVM 中文文档可访问 →Apache TVM 是一个端到端的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。 | Apache TVM 中文站 本文介…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...