当前位置: 首页 > news >正文

Pytorch个人学习记录总结 10

目录

优化器


优化器

官方文档地址:torch.optimicon-default.png?t=N6B9https://pytorch.org/docs/stable/optim.html 

Debug过程中查看的grad所在的位置:

model --> Protected Atributes --> _modules --> ‘model’ --> Protected Atributes --> _modules --> ‘0’(任选一个conv层) --> weight(查看weight下的data和grad的变化)

 简易训练代码,添加了Loss、Optim。

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torchvision.transforms import transformsdataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.model = Sequential(Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):  # 模型前向传播return self.model(x)model = Model()  # 定义模型
loss_cross = nn.CrossEntropyLoss()  # 定义损失函数
optim = torch.optim.SGD(model.parameters(), lr=0.01)  # lr不能过大或者过小。刚开始的lr可设置得较大一点,后面再对lr进行调节
len = len(dataloader)for epoch in range(20):total_loss = 0.0for imgs, targets in dataloader:outputs = model(imgs)res_loss = loss_cross(outputs, targets)optim.zero_grad()  # 优化器对model中的每一个参数进行梯度清零res_loss.backward()  # 损失反向传播optim.step()  # 对model参数开始调优total_loss += res_lossprint('epoch:{}\ttotal_loss:{}\tmean_loss:{}.'.format(epoch, total_loss, total_loss / len))
# epoch:0	total_loss:9374.806640625	mean_loss:1.8749613761901855.
# epoch:1	total_loss:7721.240234375	mean_loss:1.544248104095459.
# epoch:2	total_loss:6830.775390625	mean_loss:1.3661550283432007.

相关文章:

Pytorch个人学习记录总结 10

目录 优化器 优化器 官方文档地址:torch.optimhttps://pytorch.org/docs/stable/optim.html Debug过程中查看的grad所在的位置: model --> Protected Atributes --> _modules --> ‘model’ --> Protected Atributes --> _modules -…...

18款奔驰S320升级后排座椅加热功能,提升后排乘坐舒适性

奔驰座椅加热就简单多了,是在原车座椅海绵表面安装一层加热垫,加热垫里面是加热丝,通过电机热的原理,快速升温,把热量传递给车主。 奔驰的座椅加热系统是通过车门按键来控制,3档调节,温度从低到…...

Vue中的插值表达式

Vue中的插值表达式(Interpolation)用于将数据动态绑定到HTML模板中。它的主要作用是在模板中直接显示变量的值,并实现数据的双向绑定。以下是插值表达式的一些作用: 1.变量展示:插值表达式允许将Vue实例中的数据直接显…...

背包问题(模板)

目录 01背包: 完全背包: 多重背包(范围0-100): 混合背包: 分组背包: 二维费用的背包问题: 背包问题求方案数: 01背包: 从最大容量开始遍历到当前&…...

docker容器创建私有仓库(第三篇)

目录 六、创建私有仓库 七、Docker资源限制 7.1、CPU使用率 7.2、CPU共享比例 7.3、CPU周期限制 7.4、CPU核心限制 7.5、CPU 配额控制参数的混合案例 7.6、内存限制 7.7、Block IO 的限制 7.8、限制bps 和iops 8、Docker数据持久化 8.1、数据持久化介绍 8.2、Volum…...

Eureka 学习笔记4:客户端 DiscoveryClient

版本 awsVersion ‘1.11.277’ DiscoveryClient # cacheRefreshTask // 配置shouldFetchRegistry if (clientConfig.shouldFetchRegistry()) {// 配置client.refresh.intervalint registryFetchIntervalSeconds clientConfig.getRegistryFetchIntervalSeconds();// 配置expB…...

【方法】PDF可以转换成Word文档吗?如何操作?

很多人喜欢在工作中使用PDF,因为PDF格式可以准确地保留文档的原始格式,比如字体、图像、布局和颜色等。 但如果编辑文档的话,PDF还是没有Word文档方便。那可以将PDF转换成Word格式,再来编辑吗?如何操作呢?…...

AlphaControls crack

AlphaControls crack AlphaControls-一组通用和一些独特的组件,支持皮肤(AlphaSkins),并具有一些附加功能。所有皮肤元素都可以有自己的属性,用于高级绘制渐变、逼真的框架、半透明和模糊的阴影。图形功能实时生成所有计算和绘图。添加了用于…...

论文笔记——Influence Maximization in Undirected Networks

Influence Maximization in Undirected Networks ContributionMotivationPreliminariesNotations Main resultsReduction to Balanced Optimal InstancesProving Theorem 3.1 for Balanced Optimal Instances Contribution 好久没发paper笔记了,这篇比较偏理论&…...

Stable Diffusion - SDXL 1.0 全部样式设计与艺术家风格的配置与提示词

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/132072482 来源于 Anna Dittmann 安娜迪特曼,艺术家风格的图像,融合幻想、数字艺术、纹理等样式。 SDXL 是 Stable Diffus…...

Hbase pe 压测 OOM问题解决

说明:本人使用CDH虚拟机搭建了Hbase集群,但是在压测的时发现线程多个的时候直接回OOM,记录一下 执行命令 hbase pe --nomapred --oneContrue --tablerw_test_1 --rows1000 --valueSize100 --compressSNAPPY --presplit10 --autoFlushtrue randomWrite …...

问题解决——datagrip远程连接虚拟机中ubuntu的mysql失败

问题解决——datagrid远程连接虚拟机中ubuntu的mysql失败 情况:datagrip远程win11系统下虚拟机里的ubuntu20.04的mysql,连接失败。 1 如果是防火墙没开放3306端口,则需要开放:linux 3306端口无法连接 无法通过防火墙的解决办法 …...

【晚风摇叶之随机密码生成器】随机生成密码

需求:想要生成位数不低于16的随机密码,而且要包含大小写字母,数字,特殊字符四类 用别人的在线生成器,生成的密码有个别没有数字或者特殊字符,验证方式就是,生成几个长度是4的密码,看…...

Spring Cache

什么是Spring Cache? Spring Cache是Spring框架的一个模块,它提供了对应用程序方法级别的缓存支持。通过使用Spring Cache,您可以在方法的结果被计算后,将其缓存起来,从而避免相同输入导致的重复计算。 Spring Cache…...

em3288 linux_4.19 sd卡调试

默认配置,根据实际配置即可。...

前端vue uni-app cc-countdown倒计时组件

随着技术的不断发展,传统的开发方式使得系统的复杂度越来越高。在传统开发过程中,一个小小的改动或者一个小功能的增加可能会导致整体逻辑的修改,造成牵一发而动全身的情况。为了解决这个问题,我们采用了组件化的开发模式。通过组…...

fifo读写的数据个数

fifo IP核设置读写个数 如果不勾选精确值,则统计的当前写入和待读出的数据为估计值,可能会相差2个左右。且fifo设计的wr_data_count. wr_data_count:当前的fifo中剩余已经写入的数据。 rd_data_count:当前的fifo中剩余可以读出…...

Java之Map接口

文章目录 简述Map中key-value特点 Map接口的常用方法Map的主要实现类:HashMapHashMap概述 Map实现类之二:LinkedHashMapMap实现类之三:TreeMapMap实现类之四:Hashtable(古老实现类)Map实现类之五&#xff1…...

windows系统中的命令行可以用python,pip等命令(已在系统中添加过python环境变量),但是pycharm的terminal中无法使用。

如果你已经在Windows系统中添加了Python环境变量,那么在命令行中使用python和pip命令应该是没有问题的。但是在PyCharm的Terminal中无法使用这些命令,可能是因为PyCharm的Terminal使用的是自己的虚拟环境,而不是系统环境。 你可以尝试在PyCh…...

编译 OneFlow 模型

本篇文章译自英文文档 Compile OneFlow Models tvm 0.14.dev0 documentation 作者是 BBuf (Xiaoyu Zhang) GitHub 更多 TVM 中文文档可访问 →Apache TVM 是一个端到端的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。 | Apache TVM 中文站 本文介…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...