当前位置: 首页 > news >正文

【集成学习介绍】

1. 引言

在机器学习领域,集成学习(Ensemble Learning)是一种强大的技术,通过将多个弱学习器组合成一个更强大的集成模型,来提升模型的鲁棒性和性能。

2. 集成学习的原理

集成学习的核心思想是“三个臭皮匠,顶个诸葛亮”,即通过结合多个学习器的预测结果,来取得比单个学习器更好的性能。这样做的原因在于,不同的学习器可能会在不同的样本或特征空间上表现优秀,集成学习可以将它们的优势整合起来,从而减少过拟合,提高模型的泛化能力。

3. 集成学习的优势

3.1 鲁棒性提升

集成学习通过对多个模型进行投票或加权平均来决定最终预测结果,因此对于个别模型的错误预测不会对整体产生较大的影响,从而提升模型的鲁棒性。例如,在图像分类任务中,如果一个模型容易将某些类别的图像误分类,而另一个模型表现良好,集成学习可以有效降低误分类的风险。

3.2 提高预测性能

集成学习通常能够在保持一定复杂度的情况下,显著提高模型的预测性能。在实践中,往往可以通过简单的投票法或平均法,将多个模型的性能相结合,得到优于单个模型的结果。这在很多数据竞赛和实际项目中都取得了显著的效果。

4. 集成学习的常见方法

4.1 Bagging

Bagging是最早出现的集成学习方法之一。它通过从原始数据集中随机采样生成多个子集,然后在每个子集上训练独立的弱学习器,最后将它们的预测结果进行平均或投票。这样可以降低方差,防止过拟合。Random Forest就是Bagging方法的一个典型代表。

from sklearn.ensemble import RandomForestClassifier# 创建随机森林分类器
rf_model = RandomForestClassifier(n_estimators=50)# 在训练集上训练模型
rf_model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = rf_model.predict(X_test)

4.2 Boosting

Boosting是另一类常见的集成学习方法,它通过迭代训练一系列的弱学习器,每一轮都会根据前一轮的表现调整样本权重,使得前一轮分类错误的样本在后一轮中得到更多关注。这样,Boosting方法能够逐步改进模型的性能,提高预测的准确度。Adaboost和Gradient Boosting Machines (GBM)是Boosting方法的典型代表。

from sklearn.ensemble import AdaBoostClassifier# 创建AdaBoost分类器
adaboost_model = AdaBoostClassifier(n_estimators=100)# 在训练集上训练模型
adaboost_model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = adaboost_model.predict(X_test)

相关文章:

【集成学习介绍】

1. 引言 在机器学习领域,集成学习(Ensemble Learning)是一种强大的技术,通过将多个弱学习器组合成一个更强大的集成模型,来提升模型的鲁棒性和性能。 2. 集成学习的原理 集成学习的核心思想是“三个臭皮匠&#xff…...

动画制作选择Blender还是Maya

Blender和Maya是两种最广泛使用的 3D 建模和动画应用程序。许多经验丰富的用户表示,Blender 在雕刻工具方面远远领先于 Maya,并且在 3D 建模方面达到了相同的质量水平。对于刚接触动画行业的人来说,您可能会问“我应该使用 Blender 还是 Maya…...

215. 数组中的第K个最大元素

题目链接:力扣 解题思路: 方法一:基于快速排序 因为题目中只需要找到第k大的元素,而快速排序中,每一趟排序都可以确定一个最终元素的位置。 当使用快速排序对数组进行降序排序时,那么如果有一趟排序过程…...

NLP From Scratch: 生成名称与字符级RNN

NLP From Scratch: 生成名称与字符级RNN 这是我们关于“NLP From Scratch”的三个教程中的第二个。 在<cite>第一个教程< / intermediate / char_rnn_classification_tutorial ></cite> 中&#xff0c;我们使用了 RNN 将名称分类为来源语言。 这次&#xff…...

Spring MVC程序开发

目录 1.什么是Spring MVC? 1.1MVC定义 1.2MVC和Spring MVC的关系 2.为什么要学习Spring MVC? 3.怎么学Spring MVC? 3.1Spring MVC的创建和连接 3.1.1创建Spring MVC项目 3.1.2RequestMapping 注解介绍 3.1.3 RequestMapping 是 post 还是 get 请求&#xff1f; ​…...

医疗知识图谱问答——文本分类解析

前言 Neo4j的数据库构建完成后&#xff0c;现在就是要实现医疗知识的解答功能了。因为是初版&#xff0c;这里的问题解答不会涉及深度学习&#xff0c;目前只是一个条件查询的过程。而这个过程包括对问题的关键词拆解分类&#xff0c;然后提取词语和类型去图数据库查询&#xf…...

JS关于多张图片上传显示报错不影响后面图片上传方法

关于多张图片上传或者下载显示报错后会程序会终止执行&#xff0c;从而影响后面图片上传。 解决方法&#xff1a; /*能正常访问的图片*/ const url https://2vimg.hitv.com/100/2308/0109/5359/dqKIZ7d4cnHL/81Vu0c.jpg?x-oss-processimage/format,webp; /*不能正常下载的图…...

MySQL踩坑之sql_mode的用法

目录 定义 报错重现 ​编辑 原因分析 sql_mode值说明 查看当前sql_mode 设置sql_mode 定义 什么是sql_mode?玩了这么久的MySQL语句࿰...

消息队列总结(4)- RabbitMQ Kafka RocketMQ高性能方案

1.RabbitMQ的高性能解决方案 1.1 发布确认机制 RabbitMQ提供了3种生产者发布确认的模式&#xff1a; 简单模式&#xff08;Simple Mode&#xff09;&#xff1a;生产者发送消息后&#xff0c;等待服务器确认消息已经被接收。这种模式下&#xff0c;生产者发送消息后会阻塞&am…...

websocket服务端大报文发送连接自动断开分析

概述 当前springboot版本&#xff1a;2.7.4 使用依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency>现象概述&#xff1a; 客户端和服务端已经有心跳…...

想写几个上位机,是选择学c#还是 c++ qt呢?

C#基本也就上位机开发开发&#xff0c;另外做做日常用的小工具很方便。 结合PLC&#xff0c;以太网做上位机&#xff0c;这个基本上控制这块都比较有需求。 另外我们用C#也做一些工具的二次开发&#xff0c;感觉还行。 C用qt框架其实学习起来可能稍微复杂些&#xff0c;但是…...

JavaScript 简单实现观察者模式和发布-订阅模式

JavaScript 简单实现观察者模式和发布-订阅模式 1. 观察者模式1.1 什么是观察者模式1.2 代码实现 2. 发布-订阅模式2.1 什么是发布-订阅模式2.2 代码实现2.2.1 基础版2.2.2 取消订阅2.2.3 订阅一次 1. 观察者模式 1.1 什么是观察者模式 概念&#xff1a;观察者模式定义对象间…...

java集成短信服务 测试版 qq邮箱简单思路

java集成短信服务 注册一个帐号 使用的是容联云&#xff0c;百度搜一下官网 用手机注册一个帐号就行&#xff0c;免费体验不需要认证 注册后会有八块钱送&#xff0c;可以使用免费的给自己设置三个固定手机号发送短信&#xff0c;不需要认证。 此页面的 三个信息需要在代码中…...

#P0994. [NOIP2004普及组] 花生采摘

题目描述 鲁宾逊先生有一只宠物猴&#xff0c;名叫多多。这天&#xff0c;他们两个正沿着乡间小路散步&#xff0c;突然发现路边的告示牌上贴着一张小小的纸条&#xff1a;“欢迎免费品尝我种的花生&#xff01;――熊字”。 鲁宾逊先生和多多都很开心&#xff0c;因为花生正…...

Elasticsearch和Kibana的安装及验证

金翅大鹏盖世英&#xff0c;展翅金鹏盖世雄。 穿云燕子锡今鸽&#xff0c;踏雪无痕花云平。 ---------------- 2023.7.31.101 ----------------- 本文密钥&#xff1a;365 Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎&#xff0c;常用来进行全文检索、…...

细讲TCP三次握手四次挥手(一)

计算机网络体系结构 在计算机网络的基本概念中&#xff0c;分层次的体系结构是最基本的。计算机网络体系结构的抽象概念较多&#xff0c;在学习时要多思考。这些概念对后面的学习很有帮助。 网络协议是什么&#xff1f; 在计算机网络要做到有条不紊地交换数据&#xff0c;就必…...

【linux-zabbix】zabbix-agent启动报错:Daemon never wrote its PID file. Failing.

背景&#xff1a; 发现有部分的agent失联&#xff0c;排查发现机器正常&#xff0c;agent没起来。 排查日志发现&#xff1a; # journalctl -xe -- Support: http://lists.freedesktop.org/mailman/listinfo/systemd-devel -- -- Unit zabbix-agent.service has begun start…...

【微信小程序】初始化 wxCharts,调用updateData动态更新数据

要初始化 wxCharts&#xff0c;你需要按照以下步骤进行操作&#xff1a; 首先&#xff0c;确保已将 wx-charts.js 文件正确引入到小程序的相应页面或组件中。可以通过以下方式引入&#xff1a; const wxCharts require(../../../../components/wx-charts.js);请根据你的项目…...

【C语言初阶(19)】实用的 VS 调试技巧

文章目录 Ⅰ 调试的介绍Ⅱ 常用调试快捷键Ⅲ 调试的时候查看程序当前信息⒈查看临时变量的值⒉查看内存信息⒊查看调用堆栈⒋查看汇编信息⒌查看寄存器信息 Ⅳ 观察形参指针指向的数组Ⅴ 易于调试的代码该如何编写⒈const 修饰指针变量⒉良好代码示范 Ⅵ 编程中常见的错误 Ⅰ 调…...

虚拟机之间配置免密登录

目录 一、配置主机名映射 二、虚拟机配置SSH免密登录 三、验证 一、配置主机名映射 即修改/etc/hosts文件&#xff0c;将几台服务器和主机名进行映射。 注意每台服务器都要进行同样的配置。这样在各自服务器下&#xff0c;我们就可以通过主机名访问对应的ip地址了。 当然&…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...