【集成学习介绍】
1. 引言
在机器学习领域,集成学习(Ensemble Learning)是一种强大的技术,通过将多个弱学习器组合成一个更强大的集成模型,来提升模型的鲁棒性和性能。
2. 集成学习的原理
集成学习的核心思想是“三个臭皮匠,顶个诸葛亮”,即通过结合多个学习器的预测结果,来取得比单个学习器更好的性能。这样做的原因在于,不同的学习器可能会在不同的样本或特征空间上表现优秀,集成学习可以将它们的优势整合起来,从而减少过拟合,提高模型的泛化能力。
3. 集成学习的优势
3.1 鲁棒性提升
集成学习通过对多个模型进行投票或加权平均来决定最终预测结果,因此对于个别模型的错误预测不会对整体产生较大的影响,从而提升模型的鲁棒性。例如,在图像分类任务中,如果一个模型容易将某些类别的图像误分类,而另一个模型表现良好,集成学习可以有效降低误分类的风险。
3.2 提高预测性能
集成学习通常能够在保持一定复杂度的情况下,显著提高模型的预测性能。在实践中,往往可以通过简单的投票法或平均法,将多个模型的性能相结合,得到优于单个模型的结果。这在很多数据竞赛和实际项目中都取得了显著的效果。
4. 集成学习的常见方法
4.1 Bagging
Bagging是最早出现的集成学习方法之一。它通过从原始数据集中随机采样生成多个子集,然后在每个子集上训练独立的弱学习器,最后将它们的预测结果进行平均或投票。这样可以降低方差,防止过拟合。Random Forest就是Bagging方法的一个典型代表。
from sklearn.ensemble import RandomForestClassifier# 创建随机森林分类器
rf_model = RandomForestClassifier(n_estimators=50)# 在训练集上训练模型
rf_model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = rf_model.predict(X_test)
4.2 Boosting
Boosting是另一类常见的集成学习方法,它通过迭代训练一系列的弱学习器,每一轮都会根据前一轮的表现调整样本权重,使得前一轮分类错误的样本在后一轮中得到更多关注。这样,Boosting方法能够逐步改进模型的性能,提高预测的准确度。Adaboost和Gradient Boosting Machines (GBM)是Boosting方法的典型代表。
from sklearn.ensemble import AdaBoostClassifier# 创建AdaBoost分类器
adaboost_model = AdaBoostClassifier(n_estimators=100)# 在训练集上训练模型
adaboost_model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = adaboost_model.predict(X_test)
相关文章:
【集成学习介绍】
1. 引言 在机器学习领域,集成学习(Ensemble Learning)是一种强大的技术,通过将多个弱学习器组合成一个更强大的集成模型,来提升模型的鲁棒性和性能。 2. 集成学习的原理 集成学习的核心思想是“三个臭皮匠ÿ…...

动画制作选择Blender还是Maya
Blender和Maya是两种最广泛使用的 3D 建模和动画应用程序。许多经验丰富的用户表示,Blender 在雕刻工具方面远远领先于 Maya,并且在 3D 建模方面达到了相同的质量水平。对于刚接触动画行业的人来说,您可能会问“我应该使用 Blender 还是 Maya…...

215. 数组中的第K个最大元素
题目链接:力扣 解题思路: 方法一:基于快速排序 因为题目中只需要找到第k大的元素,而快速排序中,每一趟排序都可以确定一个最终元素的位置。 当使用快速排序对数组进行降序排序时,那么如果有一趟排序过程…...

NLP From Scratch: 生成名称与字符级RNN
NLP From Scratch: 生成名称与字符级RNN 这是我们关于“NLP From Scratch”的三个教程中的第二个。 在<cite>第一个教程< / intermediate / char_rnn_classification_tutorial ></cite> 中,我们使用了 RNN 将名称分类为来源语言。 这次ÿ…...

Spring MVC程序开发
目录 1.什么是Spring MVC? 1.1MVC定义 1.2MVC和Spring MVC的关系 2.为什么要学习Spring MVC? 3.怎么学Spring MVC? 3.1Spring MVC的创建和连接 3.1.1创建Spring MVC项目 3.1.2RequestMapping 注解介绍 3.1.3 RequestMapping 是 post 还是 get 请求? …...

医疗知识图谱问答——文本分类解析
前言 Neo4j的数据库构建完成后,现在就是要实现医疗知识的解答功能了。因为是初版,这里的问题解答不会涉及深度学习,目前只是一个条件查询的过程。而这个过程包括对问题的关键词拆解分类,然后提取词语和类型去图数据库查询…...
JS关于多张图片上传显示报错不影响后面图片上传方法
关于多张图片上传或者下载显示报错后会程序会终止执行,从而影响后面图片上传。 解决方法: /*能正常访问的图片*/ const url https://2vimg.hitv.com/100/2308/0109/5359/dqKIZ7d4cnHL/81Vu0c.jpg?x-oss-processimage/format,webp; /*不能正常下载的图…...
MySQL踩坑之sql_mode的用法
目录 定义 报错重现 编辑 原因分析 sql_mode值说明 查看当前sql_mode 设置sql_mode 定义 什么是sql_mode?玩了这么久的MySQL语句...

消息队列总结(4)- RabbitMQ Kafka RocketMQ高性能方案
1.RabbitMQ的高性能解决方案 1.1 发布确认机制 RabbitMQ提供了3种生产者发布确认的模式: 简单模式(Simple Mode):生产者发送消息后,等待服务器确认消息已经被接收。这种模式下,生产者发送消息后会阻塞&am…...

websocket服务端大报文发送连接自动断开分析
概述 当前springboot版本:2.7.4 使用依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency>现象概述: 客户端和服务端已经有心跳…...

想写几个上位机,是选择学c#还是 c++ qt呢?
C#基本也就上位机开发开发,另外做做日常用的小工具很方便。 结合PLC,以太网做上位机,这个基本上控制这块都比较有需求。 另外我们用C#也做一些工具的二次开发,感觉还行。 C用qt框架其实学习起来可能稍微复杂些,但是…...

JavaScript 简单实现观察者模式和发布-订阅模式
JavaScript 简单实现观察者模式和发布-订阅模式 1. 观察者模式1.1 什么是观察者模式1.2 代码实现 2. 发布-订阅模式2.1 什么是发布-订阅模式2.2 代码实现2.2.1 基础版2.2.2 取消订阅2.2.3 订阅一次 1. 观察者模式 1.1 什么是观察者模式 概念:观察者模式定义对象间…...

java集成短信服务 测试版 qq邮箱简单思路
java集成短信服务 注册一个帐号 使用的是容联云,百度搜一下官网 用手机注册一个帐号就行,免费体验不需要认证 注册后会有八块钱送,可以使用免费的给自己设置三个固定手机号发送短信,不需要认证。 此页面的 三个信息需要在代码中…...

#P0994. [NOIP2004普及组] 花生采摘
题目描述 鲁宾逊先生有一只宠物猴,名叫多多。这天,他们两个正沿着乡间小路散步,突然发现路边的告示牌上贴着一张小小的纸条:“欢迎免费品尝我种的花生!――熊字”。 鲁宾逊先生和多多都很开心,因为花生正…...

Elasticsearch和Kibana的安装及验证
金翅大鹏盖世英,展翅金鹏盖世雄。 穿云燕子锡今鸽,踏雪无痕花云平。 ---------------- 2023.7.31.101 ----------------- 本文密钥:365 Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎,常用来进行全文检索、…...

细讲TCP三次握手四次挥手(一)
计算机网络体系结构 在计算机网络的基本概念中,分层次的体系结构是最基本的。计算机网络体系结构的抽象概念较多,在学习时要多思考。这些概念对后面的学习很有帮助。 网络协议是什么? 在计算机网络要做到有条不紊地交换数据,就必…...
【linux-zabbix】zabbix-agent启动报错:Daemon never wrote its PID file. Failing.
背景: 发现有部分的agent失联,排查发现机器正常,agent没起来。 排查日志发现: # journalctl -xe -- Support: http://lists.freedesktop.org/mailman/listinfo/systemd-devel -- -- Unit zabbix-agent.service has begun start…...
【微信小程序】初始化 wxCharts,调用updateData动态更新数据
要初始化 wxCharts,你需要按照以下步骤进行操作: 首先,确保已将 wx-charts.js 文件正确引入到小程序的相应页面或组件中。可以通过以下方式引入: const wxCharts require(../../../../components/wx-charts.js);请根据你的项目…...

【C语言初阶(19)】实用的 VS 调试技巧
文章目录 Ⅰ 调试的介绍Ⅱ 常用调试快捷键Ⅲ 调试的时候查看程序当前信息⒈查看临时变量的值⒉查看内存信息⒊查看调用堆栈⒋查看汇编信息⒌查看寄存器信息 Ⅳ 观察形参指针指向的数组Ⅴ 易于调试的代码该如何编写⒈const 修饰指针变量⒉良好代码示范 Ⅵ 编程中常见的错误 Ⅰ 调…...

虚拟机之间配置免密登录
目录 一、配置主机名映射 二、虚拟机配置SSH免密登录 三、验证 一、配置主机名映射 即修改/etc/hosts文件,将几台服务器和主机名进行映射。 注意每台服务器都要进行同样的配置。这样在各自服务器下,我们就可以通过主机名访问对应的ip地址了。 当然&…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...