当前位置: 首页 > news >正文

【集成学习介绍】

1. 引言

在机器学习领域,集成学习(Ensemble Learning)是一种强大的技术,通过将多个弱学习器组合成一个更强大的集成模型,来提升模型的鲁棒性和性能。

2. 集成学习的原理

集成学习的核心思想是“三个臭皮匠,顶个诸葛亮”,即通过结合多个学习器的预测结果,来取得比单个学习器更好的性能。这样做的原因在于,不同的学习器可能会在不同的样本或特征空间上表现优秀,集成学习可以将它们的优势整合起来,从而减少过拟合,提高模型的泛化能力。

3. 集成学习的优势

3.1 鲁棒性提升

集成学习通过对多个模型进行投票或加权平均来决定最终预测结果,因此对于个别模型的错误预测不会对整体产生较大的影响,从而提升模型的鲁棒性。例如,在图像分类任务中,如果一个模型容易将某些类别的图像误分类,而另一个模型表现良好,集成学习可以有效降低误分类的风险。

3.2 提高预测性能

集成学习通常能够在保持一定复杂度的情况下,显著提高模型的预测性能。在实践中,往往可以通过简单的投票法或平均法,将多个模型的性能相结合,得到优于单个模型的结果。这在很多数据竞赛和实际项目中都取得了显著的效果。

4. 集成学习的常见方法

4.1 Bagging

Bagging是最早出现的集成学习方法之一。它通过从原始数据集中随机采样生成多个子集,然后在每个子集上训练独立的弱学习器,最后将它们的预测结果进行平均或投票。这样可以降低方差,防止过拟合。Random Forest就是Bagging方法的一个典型代表。

from sklearn.ensemble import RandomForestClassifier# 创建随机森林分类器
rf_model = RandomForestClassifier(n_estimators=50)# 在训练集上训练模型
rf_model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = rf_model.predict(X_test)

4.2 Boosting

Boosting是另一类常见的集成学习方法,它通过迭代训练一系列的弱学习器,每一轮都会根据前一轮的表现调整样本权重,使得前一轮分类错误的样本在后一轮中得到更多关注。这样,Boosting方法能够逐步改进模型的性能,提高预测的准确度。Adaboost和Gradient Boosting Machines (GBM)是Boosting方法的典型代表。

from sklearn.ensemble import AdaBoostClassifier# 创建AdaBoost分类器
adaboost_model = AdaBoostClassifier(n_estimators=100)# 在训练集上训练模型
adaboost_model.fit(X_train, y_train)# 在测试集上进行预测
y_pred = adaboost_model.predict(X_test)

相关文章:

【集成学习介绍】

1. 引言 在机器学习领域,集成学习(Ensemble Learning)是一种强大的技术,通过将多个弱学习器组合成一个更强大的集成模型,来提升模型的鲁棒性和性能。 2. 集成学习的原理 集成学习的核心思想是“三个臭皮匠&#xff…...

动画制作选择Blender还是Maya

Blender和Maya是两种最广泛使用的 3D 建模和动画应用程序。许多经验丰富的用户表示,Blender 在雕刻工具方面远远领先于 Maya,并且在 3D 建模方面达到了相同的质量水平。对于刚接触动画行业的人来说,您可能会问“我应该使用 Blender 还是 Maya…...

215. 数组中的第K个最大元素

题目链接:力扣 解题思路: 方法一:基于快速排序 因为题目中只需要找到第k大的元素,而快速排序中,每一趟排序都可以确定一个最终元素的位置。 当使用快速排序对数组进行降序排序时,那么如果有一趟排序过程…...

NLP From Scratch: 生成名称与字符级RNN

NLP From Scratch: 生成名称与字符级RNN 这是我们关于“NLP From Scratch”的三个教程中的第二个。 在<cite>第一个教程< / intermediate / char_rnn_classification_tutorial ></cite> 中&#xff0c;我们使用了 RNN 将名称分类为来源语言。 这次&#xff…...

Spring MVC程序开发

目录 1.什么是Spring MVC? 1.1MVC定义 1.2MVC和Spring MVC的关系 2.为什么要学习Spring MVC? 3.怎么学Spring MVC? 3.1Spring MVC的创建和连接 3.1.1创建Spring MVC项目 3.1.2RequestMapping 注解介绍 3.1.3 RequestMapping 是 post 还是 get 请求&#xff1f; ​…...

医疗知识图谱问答——文本分类解析

前言 Neo4j的数据库构建完成后&#xff0c;现在就是要实现医疗知识的解答功能了。因为是初版&#xff0c;这里的问题解答不会涉及深度学习&#xff0c;目前只是一个条件查询的过程。而这个过程包括对问题的关键词拆解分类&#xff0c;然后提取词语和类型去图数据库查询&#xf…...

JS关于多张图片上传显示报错不影响后面图片上传方法

关于多张图片上传或者下载显示报错后会程序会终止执行&#xff0c;从而影响后面图片上传。 解决方法&#xff1a; /*能正常访问的图片*/ const url https://2vimg.hitv.com/100/2308/0109/5359/dqKIZ7d4cnHL/81Vu0c.jpg?x-oss-processimage/format,webp; /*不能正常下载的图…...

MySQL踩坑之sql_mode的用法

目录 定义 报错重现 ​编辑 原因分析 sql_mode值说明 查看当前sql_mode 设置sql_mode 定义 什么是sql_mode?玩了这么久的MySQL语句࿰...

消息队列总结(4)- RabbitMQ Kafka RocketMQ高性能方案

1.RabbitMQ的高性能解决方案 1.1 发布确认机制 RabbitMQ提供了3种生产者发布确认的模式&#xff1a; 简单模式&#xff08;Simple Mode&#xff09;&#xff1a;生产者发送消息后&#xff0c;等待服务器确认消息已经被接收。这种模式下&#xff0c;生产者发送消息后会阻塞&am…...

websocket服务端大报文发送连接自动断开分析

概述 当前springboot版本&#xff1a;2.7.4 使用依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency>现象概述&#xff1a; 客户端和服务端已经有心跳…...

想写几个上位机,是选择学c#还是 c++ qt呢?

C#基本也就上位机开发开发&#xff0c;另外做做日常用的小工具很方便。 结合PLC&#xff0c;以太网做上位机&#xff0c;这个基本上控制这块都比较有需求。 另外我们用C#也做一些工具的二次开发&#xff0c;感觉还行。 C用qt框架其实学习起来可能稍微复杂些&#xff0c;但是…...

JavaScript 简单实现观察者模式和发布-订阅模式

JavaScript 简单实现观察者模式和发布-订阅模式 1. 观察者模式1.1 什么是观察者模式1.2 代码实现 2. 发布-订阅模式2.1 什么是发布-订阅模式2.2 代码实现2.2.1 基础版2.2.2 取消订阅2.2.3 订阅一次 1. 观察者模式 1.1 什么是观察者模式 概念&#xff1a;观察者模式定义对象间…...

java集成短信服务 测试版 qq邮箱简单思路

java集成短信服务 注册一个帐号 使用的是容联云&#xff0c;百度搜一下官网 用手机注册一个帐号就行&#xff0c;免费体验不需要认证 注册后会有八块钱送&#xff0c;可以使用免费的给自己设置三个固定手机号发送短信&#xff0c;不需要认证。 此页面的 三个信息需要在代码中…...

#P0994. [NOIP2004普及组] 花生采摘

题目描述 鲁宾逊先生有一只宠物猴&#xff0c;名叫多多。这天&#xff0c;他们两个正沿着乡间小路散步&#xff0c;突然发现路边的告示牌上贴着一张小小的纸条&#xff1a;“欢迎免费品尝我种的花生&#xff01;――熊字”。 鲁宾逊先生和多多都很开心&#xff0c;因为花生正…...

Elasticsearch和Kibana的安装及验证

金翅大鹏盖世英&#xff0c;展翅金鹏盖世雄。 穿云燕子锡今鸽&#xff0c;踏雪无痕花云平。 ---------------- 2023.7.31.101 ----------------- 本文密钥&#xff1a;365 Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎&#xff0c;常用来进行全文检索、…...

细讲TCP三次握手四次挥手(一)

计算机网络体系结构 在计算机网络的基本概念中&#xff0c;分层次的体系结构是最基本的。计算机网络体系结构的抽象概念较多&#xff0c;在学习时要多思考。这些概念对后面的学习很有帮助。 网络协议是什么&#xff1f; 在计算机网络要做到有条不紊地交换数据&#xff0c;就必…...

【linux-zabbix】zabbix-agent启动报错:Daemon never wrote its PID file. Failing.

背景&#xff1a; 发现有部分的agent失联&#xff0c;排查发现机器正常&#xff0c;agent没起来。 排查日志发现&#xff1a; # journalctl -xe -- Support: http://lists.freedesktop.org/mailman/listinfo/systemd-devel -- -- Unit zabbix-agent.service has begun start…...

【微信小程序】初始化 wxCharts,调用updateData动态更新数据

要初始化 wxCharts&#xff0c;你需要按照以下步骤进行操作&#xff1a; 首先&#xff0c;确保已将 wx-charts.js 文件正确引入到小程序的相应页面或组件中。可以通过以下方式引入&#xff1a; const wxCharts require(../../../../components/wx-charts.js);请根据你的项目…...

【C语言初阶(19)】实用的 VS 调试技巧

文章目录 Ⅰ 调试的介绍Ⅱ 常用调试快捷键Ⅲ 调试的时候查看程序当前信息⒈查看临时变量的值⒉查看内存信息⒊查看调用堆栈⒋查看汇编信息⒌查看寄存器信息 Ⅳ 观察形参指针指向的数组Ⅴ 易于调试的代码该如何编写⒈const 修饰指针变量⒉良好代码示范 Ⅵ 编程中常见的错误 Ⅰ 调…...

虚拟机之间配置免密登录

目录 一、配置主机名映射 二、虚拟机配置SSH免密登录 三、验证 一、配置主机名映射 即修改/etc/hosts文件&#xff0c;将几台服务器和主机名进行映射。 注意每台服务器都要进行同样的配置。这样在各自服务器下&#xff0c;我们就可以通过主机名访问对应的ip地址了。 当然&…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...