当前位置: 首页 > news >正文

自然语言文本分类模型代码

        以下是一个基于PyTorch的文本分类模型的示例代码,用于将给定的文本分为多个预定义类别:

import torch
import torch.nn as nn
import torch.nn.functional as Fclass TextClassifier(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, num_layers, bidirectional, dropout):super().__init__()self.embedding = nn.Embedding(vocab_size, embedding_dim)self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=bidirectional, dropout=dropout)self.fc = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, output_dim)self.dropout = nn.Dropout(dropout)def forward(self, text, text_lengths):embedded = self.dropout(self.embedding(text))packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths.to('cpu'), enforce_sorted=False)packed_output, (hidden, cell) = self.rnn(packed_embedded)output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output)hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1) if self.rnn.bidirectional else hidden[-1,:,:])return self.fc(hidden.squeeze(0))

        该模型将输入的文本作为整数序列传递给嵌入层,然后通过多层LSTM层进行处理,最终输出每个类别的预测概率。

        在训练模型之前,需要将文本序列转换为整数标记,通常使用分词器/标记器完成此任务。另外还需要定义优化器和损失函数来训练模型。

        以下是一个完整的训练脚本的示例:

import torch.optim as optim
from torchtext.datasets import AG_NEWS
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
from torch.utils.data import DataLoader
from torchtext.data.utils import ngrams_iterator
from torchtext.data.utils import get_tokenizer
from torch.utils.data.dataset import random_split
from collections import Counter# 获取数据集和分词器
train_iter = AG_NEWS(split='train')
tokenizer = get_tokenizer('basic_english')# 构建词汇表
counter = Counter()
for (label, line) in train_iter:counter.update(tokenizer(line))
vocab = build_vocab_from_iterator([counter])
vocab.set_default_index(vocab['<unk>'])# 定义标记化函数和文本处理函数
def yield_tokens(data_iter):for _, text in data_iter:yield tokenizer(text)def text_transform(tokenizer, vocab, data):"""将文本数据转换为张量数据"""data = [vocab[token] for token in tokenizer(data)]return torch.tensor(data)# 定义批次生成器
def collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_label, _text) in batch:label_list.append(_label-1)processed_text = torch.cat([text_transform(tokenizer, vocab, _text), torch.tensor([vocab['<eos>']])])text_list.append(processed_text)offsets.append(processed_text.size(0))label_list = torch.tensor(label_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)text_list = torch.cat(text_list)return label_list, text_list, offsets# 构建数据集和数据加载器
train_iter, test_iter = AG_NEWS()
train_iter = list(train_iter)
test_iter = list(test_iter)
train_dataset = list(map(lambda x: (x[0], x[1]), train_iter))
test_dataset = list(map(lambda x: (x[0], x[1]), test_iter))
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, collate_fn=collate_batch)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True, collate_fn=collate_batch)# 创建模型和优化器
model = TextClassifier(len(vocab), 64, 128, 4, 2, True, 0.5)
optimizer = optim.Adam(model.parameters())# 定义损失函数和训练函数
criterion = nn.CrossEntropyLoss()def train(model, iterator, optimizer, criterion):epoch_loss = 0model.train()for (label, text, offsets) in iterator:optimizer.zero_grad()predictions = model(text, offsets)loss = criterion(predictions, label)loss.backward()optimizer.step()epoch_loss += loss.item()return epoch_loss / len(iterator)# 训练模型
N_EPOCHS = 10
for epoch in range(N_EPOCHS):train_loss = train(model, train_loader, optimizer, criterion)print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f}')

        在训练过程结束后,可以使用该模型对新的文本进行分类。具体方法是将文本转换为整数标记序列,然后使用模型进行预测:

# 对新文本进行分类
def predict(model, sentence):model.eval()tokenized = torch.tensor([vocab[token] for token in tokenizer(sentence)])length = torch.tensor([len(tokenized)])prediction = model(tokenized, length)return F.softmax(prediction, dim=1).detach().numpy()[0]# 进行预测
test_sentence = "World markets are reacting to the news that the UK is set to leave the European Union."
pred_probs = predict(model, test_sentence)
print(pred_probs)

        以上代码示例中使用了AG_NEWS数据集作为示例训练数据,可通过以下方式加载数据集:

from torchtext.datasets import AG_NEWS
train_iter = AG_NEWS(split='train')
test_iter = AG_NEWS(split='test')

        该数据集包含四个类别的新闻数据,每个类别各有120,000个训练示例和7,600个测试示例。完整的训练脚本和数据集可以在PyTorch官方文档中找到。

相关文章:

自然语言文本分类模型代码

以下是一个基于PyTorch的文本分类模型的示例代码&#xff0c;用于将给定的文本分为多个预定义类别&#xff1a; import torch import torch.nn as nn import torch.nn.functional as Fclass TextClassifier(nn.Module):def __init__(self, vocab_size, embedding_dim, hidden_…...

Prometheus实现系统监控报警邮件

Prometheus实现系统监控报警邮件 简介 Prometheus将数据采集和报警分成了两个模块。报警规则配置在Prometheus Servers上&#xff0c; 然后发送报警信息到AlertManger&#xff0c;然后我们的AlertManager就来管理这些报警信息&#xff0c;聚合报警信息过后通过email、PagerDu…...

could not import go.etcd.io/etcd/clientv3-go

问题描述 今天在封装etcd的时候导包报错: could not import go.etcd.io/etcd/clientv3 (no required module provides package "go.etcd.io/etcd/clientv3") 问题解决: get:确保下载了client包 go get go.etcd.io/etcd/client tidy go mod tidy 本文由 mdnice 多平台…...

MySQL的行锁、表锁触发

MySQL的行锁、表锁触发 sql CREATE TABLE products ( product_id INT PRIMARY KEY, product_name VARCHAR(50), stock INT ); INSERT INTO products (product_id, product_name, stock) VALUES (1001, ‘商品A’, 50), (1002, ‘商品B’, 30), (1003, ‘商品C’, 20); 一、行锁…...

mysql-入门笔记-3

# ----------排序查询-------- # 语法 # select 字段列表 from 表名 order by 字段1 排序方式1 ,字段2 排序方式2 ; DESC 降序 ASC升序 # 1 根据年龄对公司的员工进行升序排序---默认升序-黄色提示代码冗余 select * from userTable order by age ASC ; # 2 根据入职时间,对员…...

3分钟创建超实用的中小学新生录取查询系统,现在可以实现了

在新学期开始之际&#xff0c;作为招生负责人&#xff0c;您是否已经做好准备来迎接新学年的招生工作呢&#xff1f;录取新生所需的任务包括录入成绩信息、核对招生要求以及公布新生录取信息等&#xff0c;这些工作繁重而具有挑战性&#xff0c;给负责招生的老师带来了巨大的压…...

Redis 变慢了 解决方案

一、Redis为什么变慢了 1.Redis真的变慢了吗&#xff1f; 对 Redis 进行基准性能测试 例如&#xff0c;我的机器配置比较低&#xff0c;当延迟为 2ms 时&#xff0c;我就认为 Redis 变慢了&#xff0c;但是如果你的硬件配置比较高&#xff0c;那么在你的运行环境下&#xff…...

远程仓库的操作

一、远程仓库的操作命令 git remote # 查看当前项目关联的远程库 我事先关联了一个GitHub的远程仓库&#xff0c;关于如何关联远程仓库&#xff0c;可以看这篇文章远程仓库GitHub和Gitee_林涧泣的博客-CSDN博客 git remote add [仓库服务器名] [远程仓库地址] # 关联远程仓库…...

一个监控系统的典型架构

监控系统的典型架构图&#xff0c;从左往右看&#xff0c;采集器是负责采集监控数据的&#xff0c;采集到数据之后传输给服务端&#xff0c;通常是直接写入时序库。然后就是对时序库的数据进行分析和可视化&#xff0c;分析部分最典型的就是告警规则判断&#xff0c;即图上的告…...

让GPT人工智能变身常用工具-中

...

HCIP中期实验

1、该拓扑为公司网络&#xff0c;其中包括公司总部、公司分部以及公司骨干网&#xff0c;不包含运营商公网部分。 2、设备名称均使用拓扑上名称改名&#xff0c;并且区分大小写。 3、整张拓扑均使用私网地址进行配置。 4、整张网络中&#xff0c;运行OSPF协议或者BGP协议的设备…...

《向量数据库指南》——向量数据库Milvus Cloud、Pinecone、Vespa、Weaviate、Vald、GSI 、 Qdrant选哪个?

1、Milvus Cloud(https://milvuscloud.com) Milvus是一个开源的向量数据库,支持高效的向量搜索和相似度匹配。它针对大规模向量数据集的性能进行了优化,并提供了Python、Java、Go和C++等多种语言的客户端接口。Milvus在图像、音频、文本和推荐等领域都有广泛的应用。 2…...

python与深度学习(十一):CNN和猫狗大战

目录 1. 说明2. 猫狗大战2.1 导入相关库2.2 建立模型2.3 模型编译2.4 数据生成器2.5 模型训练2.6 模型保存2.7 模型训练结果的可视化 3. 猫狗大战的CNN模型可视化结果图4. 完整代码5. 猫狗大战的迁移学习 1. 说明 本篇文章是CNN的另外一个例子&#xff0c;猫狗大战&#xff0c…...

经典CNN(三):DenseNet算法实战与解析

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊|接辅导、项目定制 1 前言 在计算机视觉领域&#xff0c;卷积神经网络&#xff08;CNN&#xff09;已经成为最主流的方法&#xff0c;比如GoogleNet&#xff0c;…...

学习笔记——压力测试案例,监控平台

测试案例 # 最简单的部署方式直接单机启动 nohup java -jar lesson-one-0.0.1-SNAPSHOT.jar > ./server.log 2>&1 &然后配置执行计划&#xff1a; 新建一个执行计划 配置请求路径 配置断言配置响应持续时间断言 然后配置一些查看结果的统计报表或者图形 然后我…...

sqlite 踩坑

内存数据库 强制SQLite数据库单纯的存在于内存中的常用方法是使用特殊文件名“ &#xff1a;memory&#xff1a; ” db QSqlDatabase::addDatabase("QSQLITE", "MEMORY"); db.setDatabaseName(":memory:"); 调用此接口完成后&#xff0c;不…...

【论文笔记】神经网络压缩调研

神经网络压缩调研 背景现有的深度模型压缩方法NetWork Prunning 网络剪枝设计结构化矩阵知识蒸馏权值共享Parameter Quantization&#xff08;参数量化&#xff09;量化和二进制化伪量化Architecture Design&#xff08;Depth Separable Convolution&#xff09;分解卷积 背景 …...

红外NEC通信协议

一、NEC简介 红外(Infrared&#xff0c;IR)遥控是一种无线、非接触控制技术&#xff0c;常用于遥控器、无线键盘、鼠标等设备之间的通信。IR协议的工作原理是&#xff0c;发送方通过红外线发送一个特定的编码&#xff0c;接收方通过识别该编码来执行相应的操作。 IR协议是指红外…...

数据分析DAY1

数据分析 引言 这一周&#xff1a;学习了python的numpy和matplotlib以及在飞桨paddle上面做了几个小项目 发现numpy和matplotlib里面有很多api&#xff0c;要全部记住是不可能的&#xff0c;也是不可能全部学完的&#xff0c;所以我们要知道并且熟悉一些常用的api&#xff0…...

算法通关村—迭代实现二叉树的前序,中序,后序遍历

1. 前序中序后序递归写法 前序 public void preorder(TreeNode root, List<Integer> res) {if (root null) {return;}res.add(root.val);preorder(root.left, res);preorder(root.right, res);}后序 public static void postOrderRecur(TreeNode head) {if (head nu…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

Android屏幕刷新率与FPS(Frames Per Second) 120hz

Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数&#xff0c;单位是赫兹&#xff08;Hz&#xff09;。 60Hz 屏幕&#xff1a;每秒刷新 60 次&#xff0c;每次刷新间隔约 16.67ms 90Hz 屏幕&#xff1a;每秒刷新 90 次&#xff0c;…...

【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space

问题&#xff1a;IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案&#xff1a;将编译的堆内存增加一点 位置&#xff1a;设置setting-》构建菜单build-》编译器Complier...

云原生时代的系统设计:架构转型的战略支点

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、云原生的崛起&#xff1a;技术趋势与现实需求的交汇 随着企业业务的互联网化、全球化、智能化持续加深&#xff0c;传统的 I…...

Docker环境下安装 Elasticsearch + IK 分词器 + Pinyin插件 + Kibana(适配7.10.1)

做RAG自己打算使用esmilvus自己开发一个&#xff0c;安装时好像网上没有比较新的安装方法&#xff0c;然后找了个旧的方法对应试试&#xff1a; &#x1f680; 本文将手把手教你在 Docker 环境中部署 Elasticsearch 7.10.1 IK分词器 拼音插件 Kibana&#xff0c;适配中文搜索…...

DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model

一、研究背景与创新点 (一)现有方法的局限性 当前智驾系统面临两大核心挑战:一是长尾问题,即系统在遇到新场景时可能失效,例如突发交通状况或非常规道路环境;二是可解释性问题,传统方法无法解释智驾系统的决策过程,用户难以理解车辆行为的依据。传统语言模型(如 BERT…...