第八篇-Tesla P40+ChatGLM2+LoRA
部署环境
系统:CentOS-7CPU: 14C28T显卡:Tesla P40 24G驱动: 515CUDA: 11.7cuDNN: 8.9.2.26
目的
验证P40部署可行性,只做验证学习lora方式微调
创建环境
conda create --name glm-tuning python=3.10
conda activate glm-tuning
克隆项目
git clone https://github.com/hiyouga/ChatGLM-Efficient-Tuning
cd ChatGLM-Efficient-Tuning
安装依赖
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
准备数据-少量测试-项目已提供分词好数据
准备数据
我们将下载好的数据集解压到 data 文件夹中,解压后的文件目录为:
data/
├── dataset_info.json
└── self_cognition/
├── dev.json
└── train.json
接下来,我们修改 dataset_info.json,增加以下两列内容,从而使训练框架能够识别自定义数据集。
测试dev.json与train.json一样的,生产环境需要分离,
"self_cognition_train": {"file_name": "self_cognition/train.json","columns": {"prompt": "content","query": "","response": "summary","history": ""}
},
"self_cognition_dev": {"file_name": "self_cognition/dev.json","columns": {"prompt": "content","query": "","response": "summary","history": ""}
}
微调代码调整
accelerate launch src/train_bash.py \--stage sft \--do_train \--model_name_or_path /models/chatglm2-6b \--dataset self_cognition_train \--finetuning_type lora \--output_dir self_cognition_lora \--overwrite_cache \--per_device_train_batch_size 2 \--gradient_accumulation_steps 2 \--lr_scheduler_type cosine \--logging_steps 10 \--save_steps 1000 \--learning_rate 1e-3 \--num_train_epochs 2.0 \--lora_rank 32 \--ddp_find_unused_parameters False \--source_prefix 你现在是一名销售员,根据以下商品标签生成一段有吸引力的商品广告词。 \--plot_loss \--fp16
如果调整了数据集,要清理缓存,缓存目录如下
/root/.cache/huggingface/datasets
Tue Aug 1 10:45:02 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla P40 Off | 00000000:03:00.0 Off | 0 |
| N/A 61C P0 184W / 250W | 13503MiB / 23040MiB | 94% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
{'train_runtime': 73.3871, 'train_samples_per_second': 2.18, 'train_steps_per_second': 0.545, 'train_loss': 1.7150115966796875, 'epoch': 2.0}
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [01:13<00:00, 1.83s/it]***** train metrics *****epoch = 2.0train_loss = 1.715train_runtime = 0:01:13.38train_samples_per_second = 2.18train_steps_per_second = 0.545
参数:参数根据自己硬件配置自己调整
温度:P40自己改个风冷散热,散热效果不好,奔着80度去了
显存:占用大概14G
模型测试
CUDA_VISIBLE_DEVICES=0 python src/cli_demo.py \--model_name_or_path /models/chatglm2-6b \--checkpoint_dir self_cognition_lora
python src/web_demo.py --checkpoint_dir self_cognition_lora --model_name_or_path /models/chatglm2-6b
Input: 你是谁
ChatGLM-6B: The dtype of attention mask (torch.int64) is not bool
我是AI小木,一个由小吕开发的人工智能助手,我可以回答各种问题,提供信息,甚至进行闲聊。
Input: 你是谁开发的
ChatGLM-6B: 我不是开发的,是由小吕开发的人工智能助手,旨在为用户提供有用的回答和帮助
总结
效果还行,我的参数都设置的比较小,速度挺快的2分钟,模型微调之后认识已经调整过来了
后面准备调整更大数据集,再做数据评测
–model_name_or_path /models/chatglm2-6b 注意指定
参考
https://hub.nuaa.cf/hiyouga/ChatGLM-Efficient-Tuning/blob/main/examples/ads_generation.md
相关文章:
第八篇-Tesla P40+ChatGLM2+LoRA
部署环境 系统:CentOS-7CPU: 14C28T显卡:Tesla P40 24G驱动: 515CUDA: 11.7cuDNN: 8.9.2.26目的 验证P40部署可行性,只做验证学习lora方式微调创建环境 conda create --name glm-tuning python3.10 conda activate glm-tuning克隆项目 git clone http…...

调用feign返回错误的数据
bug描述: 在一个请求方法中会调用到feign去获取其他的数据。 List<Demo> list aaaFeignApi.getData(personSelectGetParam);在调用的时候,打断点到feign的地方,数据是存在的,并且有15条。但是返回到上面代码的时候数据就…...

【Spring】(二)从零开始的 Spring 项目搭建与使用
文章目录 前言一、Spring 项目的创建1.1 创建 Maven 项目1.2 添加 Spring 框架支持1.3 添加启动类 二、储存 Bean 对象2.1 创建 Bean2.1 将 Bean 注册到 Spring 容器 三、获取并使用 Bean 对象3.1 获取Spring 上下文3.2 ApplicationContext 和 BeanFactory 的区别3.3 获取指定的…...

redis五种数据类型介绍
、string(字符串) 它师最基本的类型,可以理解为Memcached一模一样的类型,一个key对应一个value。 注意:一个键最大能存储 512MB。 特性:可以包含任何数据,比如jpg图片或者序列化的对象,一个键最大能存储512…...

【JavaEE】Spring Boot - 项目的创建和使用
【JavaEE】Spring Boot 开发要点总结(1) 文章目录 【JavaEE】Spring Boot 开发要点总结(1)1. Spring Boot 的优点2. Spring Boot 项目创建2.1 下载安装插件2.2 创建项目过程2.3 加载项目2.4 启动项目2.5 删除一些没用的文件 3. Sp…...
Git reset、revert用法
reset reset是删除之前的提交记录,所有的提交点都会被清除,我们看下执行前后的git log区别 D:\workspace\android>git log commit 87c1277a57544c53c603b04110e3dde100da8f57 (HEAD -> develop_main) Author: test <test.com> Date: Wed…...

Redis-1
Redis 理论部分 redis 速度快的原因 1、纯内存操作 2、单线程操作,避免了频繁的上下文切换和资源争用问题,多线程需要占用更多的 CPU 资源 3、采用了非阻塞 I/O 多路复用机制 4、提供了非常高效的数据结构,例如双向链表、压缩页表和跳跃…...

【Linux】Linux服务器连接百度网盘:实现上传下载
【Linux】Linux服务器连接百度网盘:实现上传下载 文章目录 【Linux】Linux服务器连接百度网盘:实现上传下载1. 前言2. 具体过程2.1 pip 安装所需包2.2 认证(第一次连接需要认证)2.3 下载所需文件或者目录2.4 其他指令使用2.5 注意…...

ADC模拟看门狗
如果被ADC转换的模拟电压低于低阀值或高于高阀值,AWD模拟看门狗状态位被设置。阀值位 于ADC_HTR和ADC_LTR寄存器的最低12个有效位中。通过设置ADC_CR1寄存器的AWDIE位 以允许产生相应中断。通过以下函数可以进行配置 void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx…...

google谷歌gmail邮箱账号注册手机号无法进行验证怎么办?此电话号码无法用于进行验证 或 此电话号码验证次数太多
谷歌gmail邮箱账号注册手机号无法进行验证怎么办? 使用手机号码注册谷歌gmail邮箱账号时会遇到:此电话号码无法用于进行验证 或 此电话号码验证次数太多。造成注册google谷歌gmail邮箱账号受阻,无法正常完成注册。 谷歌Gmail邮箱账号正确的注册方法与教…...

Spring:IOC技术、Bean、DI
前言 Spring是一个开源的项目,并不是单单的一个技术,发展至今已形成一种开发生态圈。也就是说我们可以完全使用Spring技术完成整个项目的构建、设计与开发。Spring是一个基于IOC和AOP的架构多层j2ee系统的架构。 SpringFramework:Spring框架…...

目标检测与跟踪 (2)- YOLO V8配置与测试
系列文章目录 第一章 目标检测与跟踪 (1)- 机器人视觉与YOLO V8 目标检测与跟踪 (1)- 机器人视觉与YOLO V8_Techblog of HaoWANG的博客-CSDN博客3D物体实时检测、三维目标识别、6D位姿估计一直是机器人视觉领域的核心研究课题&a…...
【Leetcode】56.合并区间
一、题目 1、题目描述 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [ s t a r t i start_i start...

设置系统编码 Beta
在yolov5环境搭建过程中会遇到如下的编码错误警告: 这时,按住“ctrlc”中止进程,然后设置系统编码: 电脑右键属性打开: 重启之后等安装好了,记得回去把bae键取消。...
phpunit
composer地址:phpunit/phpunit - Packagist 官方文档:PHPUnit文档 – PHP测试框架 PHPUnit是一个框架,最为hyperf学习的补充学习,就不写这么细了。 估计写下安装和使用,具体学习内容看文档。 一、安装 需安装扩展:…...

html学习9(脚本)
1、<script>标签用于定义客户端脚本,比如JavaScript,既可包含脚本语句,也可通过src属性指向外部文件。 2、JavaScript最常用于图片操作、表单验证及内容动图更新。 3、<noscript>标签用于在浏览器禁用脚本或浏览器不支持脚本&a…...

SpringBoot整合Caffeine
一、Caffeine介绍 1、缓存介绍 缓存(Cache)在代码世界中无处不在。从底层的CPU多级缓存,到客户端的页面缓存,处处都存在着缓存的身影。缓存从本质上来说,是一种空间换时间的手段,通过对数据进行一定的空间安排,使得下…...

元宇宙虚拟展厅的特点是什么呢?优势有哪些?
元宇宙是一个很广阔的虚拟世界,它可以创造出更为丰富、沉浸式的体验,这种全新的体验为展览和艺术领域带来了更多的可能性,元宇宙虚拟展厅以其多样化、互动性、沉浸式展示的特点,带领大家进入一个虚拟现实的全新世界。 元宇宙虚拟展…...

Day11-Webpack前端工程化开发
Webpack 一 webpack基本概念 遇到问题 开发中希望将文件分开来编写,比如CSS代码,可以分为头部尾部内容,公共的样式。 JS代码也希望拆分为多个文件,分别引入,以后代码比较好维护。 本地图片,希望可以实现小图片不用访问后端,保存在前端代码中就可以了 运行程序时我…...
什么是函数式编程,应用场景是什么
什么是函数式编程,应用场景是什么 函数式编程和面向对象编程一样,是一种编程规范。强调执行的过程而非结果,通过一系列的嵌套的函数调用,完成一个运算过程。它主要有以下几个特点: 1.函数是"一等公民"&…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...

uni-app学习笔记二十七--设置底部菜单TabBar的样式
官方文档地址:uni.setTabBarItem(OBJECT) | uni-app官网 uni.setTabBarItem(OBJECT) 动态设置 tabBar 某一项的内容,通常写在项目的App.vue的onLaunch方法中,用于项目启动时立即执行 重要参数: indexnumber是tabBar 的哪一项&…...
Java + Spring Boot + Mybatis 插入数据后,获取自增 id 的方法
在 MyBatis 中使用 useGeneratedKeys"true" 获取新插入记录的自增 ID 值,可通过以下步骤实现: 1. 配置 Mapper XML 在插入语句的 <insert> 标签中设置: xml 复制 下载 运行 <insert id"insertUser" para…...