当前位置: 首页 > news >正文

2023年第四届“华数杯”数学建模思路 - 案例:最短时间生产计划安排

文章目录

  • 0 赛题思路
  • 1 模型描述
  • 2 实例
    • 2.1 问题描述
    • 2.2 数学模型
      • 2.2.1 模型流程
          • 2.2.2 符号约定
          • 2.2.3 求解模型
    • 2.3 相关代码
    • 2.4 模型求解结果

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

最短时间生产计划模型

该模型出现在好几个竞赛赛题上,预测2022今年国赛也会与该模型相关。

1 模型描述

离散系统仿真在工业生产的工序安排中起到了相当重要的作用,如何就一些内部机制复杂的离散问题建立简单易行、可监测性强的数学模型一直是仿真技术的研究热点.

离散事件系统现有三种仿真建模策略,即:

  • 事件调度法
  • 活动扫描法
  • 进程交互法.

该模型demo学长采用了其中的活动扫描法对生产中的一个实际例子进行了处理.

活动扫描法对于各事件之间相关性很强的系统有着很好的适用性.

2 实例

2.1 问题描述

在许多工厂生产过程中,由于设备的数量、产品加工的次序限制,往往不能简单地安排生产任务.我们设想,应用强大的数学软件配合简单易行的方法进行安排.

设某重型机械厂产品都是单件性的,其中有一车间共有4种不同设备,现接受6件产品的加工任务,每件产品接受的程序在指定的设备上加工,其工序与加工周期如下表

在这里插入图片描述
现在我们根据这一实际问题,寻求安排的方法.

要求:

1、每件产品必须按规定的工序加工,不得颠倒.

2、每台设备在同一时间只能担任一项任务(每件产品的每个工序为一个任务).

3、在尽可能短的时间里,完成所接受的全部任务.

为了节省电能,合理分配生产任务,厂方还要求:

1、做出每件产品的每个工序开工、完工时间表.

2、给出每台设备承担任务的时间表.

2.2 数学模型

2.2.1 模型流程

在这里插入图片描述

2.2.2 符号约定

在这里插入图片描述

2.2.3 求解模型

在这里插入图片描述在这里插入图片描述在这里插入图片描述

2.3 相关代码

clear
clc
seq=[3 1 2 3 4 0 0 0                     %各产品加工时所用的设备的次序1 4 2 3 0 0 0 03 4 1 2 1 0 0 02 3 4 1 4 3 0 04 2 3 4 1 3 4 01 2 1 3 4 1 3 1];tim=[8 2 4 24 6 0 0 0                   %加工对应使用的时间4 5 3 4 0 0 0 03 7 15 20 8 0 0 07 6 21 1 16 3 0 010 4 8 4 12 6 1 01 4 7 3 5 2 5 8];
whole=[0 0 0 0];
for i=1:6for j=1:8if(seq(i,j)~=0)whole(seq(i,j))=whole(seq(i,j))+tim(i,j);endend
end
whole                          %生产各件产品所需的总时间mes=cell(4,1);                   %记录各个设备的工作时间(对应于上面tim的位置)
for k=1:4mes{k,1}=zeros(6,8);for j=1:8for i=1:6if(seq(i,j)==k)mes{k,1}(i,j)=tim(i,j);elsemes{k,1}(i,j)=100;endendend
endturn=cell(5,100);               %记录四个设备的开关时间及加工对象(on(i)for i=1:4for j=1:100turn{i,j}='off';end
end
for i=1:100turn{5,i}=[num2str(i) '分'];
endopen=zeros(6,8);           
%记录6个产品的加工进度,0表示未进行,1表示已开始(或已结束),2表示可选,3表示没有这个程序
for i=1:6open(i,1)=2;
end
for i=1:6for j=1:8if seq(i,j)==0open(i,j)=3;endend
endgongxu=zeros(6,1);
dai=zeros(4,1);
j=1;
s=[1	1	1	1	1	3	3	3
1	1	1	1	3	3	3	3
1	1	1	1	1	3	3	3
1	1	1	1	1	1	3	3
1	1	1	1	1	1	1	3
1	1	1	1	1	1	1	1];
while isequal(open,s)==0on=[];for i=1:4if turn{i,j}=='off'  
%在turn矩阵中逐列搜索,若设备处于关机状态,则作记录(可用)on=[on i];endendl1=length(on);for m=1:l1          %在整个生产计划中(对设备逐个)寻找能够选作操作的步骤[x,y]=find(open==2);l2=length(x);a=[x(1) y(1)];for k=1:l2   %对某个设备on(m),找出当前它能操作的步骤中耗时最小的一个if mes{on(m)}(a(1),a(2))>mes{on(m)}(x(k),y(k))a=[x(k) y(k)];endendif turn{on(m),j}=='off' & mes{on(m)}(a(1),a(2))~=100 
%若时间为100则意味着这个步骤不属于我们希望使用的那件设备while tim(a(1),a(2))>0turn{on(m),tim(a(1),a(2))+j-1}=a(1);tim(a(1),a(2))=tim(a(1),a(2))-1;endendendfor i=1:4if turn{i,j}~='off'dai(i)=turn{i,j};endendfor i=1:4if turn{i,j}~='off' & turn{i,j+1}=='off'gongxu(turn{i,j})=gongxu(turn{i,j})+1;open(turn{i,j},gongxu(turn{i,j}))=1;endif gongxu(dai(i))<8 & open(dai(i),gongxu(dai(i))+1)~=3 & turn{i,j+1}=='off'open(dai(i),gongxu(dai(i))+1)=2;endendj=j+1;
end

2.4 模型求解结果

每件产品的每个工序开工、完工时间表

在这里插入图片描述
每台设备承担任务的时间表

在这里插入图片描述
从结果中我们可以看到,使用这种方法,只需78个单位时间就可以完成所有的工序.而我们同时也可以在论文的开始部分看到,单就完成 就需耗费75个单位时间.可见这种方法得出的结果还是相当使人满意的,而且操作简单,可监测性强.

相关文章:

2023年第四届“华数杯”数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; 最短时间生产计划模型 该模型出现在好几个竞赛赛题上&#x…...

LeetCode404. 左叶子之和

404. 左叶子之和 文章目录 [404. 左叶子之和](https://leetcode.cn/problems/sum-of-left-leaves/)一、题目二、题解方法一&#xff1a;递归方法二&#xff1a;迭代 一、题目 给定二叉树的根节点 root &#xff0c;返回所有左叶子之和。 示例 1&#xff1a; 输入: root [3,9…...

Nginx 高性能内存池 ----【学习笔记】

跟着这篇文章学习&#xff1a; c代码实现一个高性能内存池&#xff08;超详细版本&#xff09;_c 内存池库_linux大本营的博客-CSDN博客https://blog.csdn.net/qq_40989769/article/details/130874660以及这个视频学习&#xff1a; nginx的内存池_哔哩哔哩_bilibilihttps://w…...

iOS--frame和bounds

坐标系 首先&#xff0c;我们来看一下iOS特有的坐标系&#xff0c;在iOS坐标系中以左上角为坐标原点&#xff0c;往右为X正方向&#xff0c;往下是Y正方向如下图&#xff1a; bounds和frame都是属于CGRect类型的结构体&#xff0c;系统的定义如下&#xff0c;包含一个CGPoint…...

docker logs 使用说明

docker logs 可以查看某个容器内的日志情况。 前置参数说明 c_name容器名称 / 容器ID logs 获取容器的日志 , 命令如下&#xff1a; docker logs [options] c_name option参数&#xff1a; -n 查看最近多少条记录&#xff1a;docker logs -n 5 c_name--tail与-n 一样 &#…...

Ceph入门到精通-Ceph PG状态详细介绍(全)

本文主要介绍PG的各个状态&#xff0c;以及ceph故障过程中PG状态的转变。 Placement Group States&#xff08;PG状态&#xff09; creating Ceph is still creating the placement group. Ceph 仍在创建PG。activating The placement group is peered but not yet active.…...

【数据结构】二叉树、二叉搜索树、平衡二叉树、红黑树、B树、B+树

概述 二叉树&#xff08;Binary Tree&#xff09;&#xff1a;每个节点最多有两个子节点&#xff08;左子节点和右子节点&#xff09;&#xff0c;没有限制节点的顺序。特点是简单直观&#xff0c;易于实现&#xff0c;但查找效率较低。 二叉搜索树&#xff08;Binary Search…...

【JVM】(二)深入理解Java类加载机制与双亲委派模型

文章目录 前言一、类加载过程1.1 加载&#xff08;Loading&#xff09;1.2 验证&#xff08;Verification&#xff09;1.3 准备&#xff08;Preparation&#xff09;1.4 解析&#xff08;Resolution&#xff09;1.5 初始化&#xff08;Initialization&#xff09; 二、双亲委派…...

npm i 报错项目启动不了解决方法

1.场景 在另一台电脑低版本node环境跑的react项目&#xff0c;换到另一台电脑node18环境执行npm i时候报错 2.解决方法 脚本前加上set NODE_OPTIONS--openssl-legacy-provider...

【从零开始学习JAVA | 第三十七篇】初识多线程

目录 前言&#xff1a; ​编辑 引入&#xff1a; 多线程&#xff1a; 什么是多线程&#xff1a; 多线程的意义&#xff1a; 多线程的应用场景&#xff1a; 总结&#xff1a; 前言&#xff1a; 本章节我们将开始学习多线程&#xff0c;多线程是一个很重要的知识点&#xff…...

微信新功能,你都知道吗?

近日iOS 微信8.0.40正式版来了&#xff0c;一起来看看有哪些变化&#xff1f; 1、朋友圈置顶 几个月前微信开始内测「朋友圈置顶」功能&#xff0c;从网友们的反馈来看&#xff0c;iOS 微信 8.0.40 似乎扩大了内测范围&#xff0c;更多用户可以体验到该功能了。 大家可以去自己…...

Android 中 app freezer 原理详解(二):S 版本

基于版本&#xff1a;Android S 0. 前言 在之前的两篇博文《Android 中app内存回收优化(一)》和 《Android 中app内存回收优化(二)》中详细剖析了 Android 中 app 内存优化的流程。这个机制的管理通过 CachedAppOptimizer 类管理&#xff0c;为什么叫这个名字&#xff0c;而不…...

Vue3_04_ref 函数和 reactive 函数

ref 函数 声明变量时&#xff0c;赋值的值要写在 ref() 函数中修改变量时&#xff0c;变量名.value xxx在模板中使用时可以省略掉 .value&#xff0c;直接使用变量名即可 <template><h1>一个人的信息</h1><h2>姓名&#xff1a;{{name}}</h2><…...

05 Ubuntu下安装.deb安装包方式安装vscode,snap安装Jetbrains产品等常用软件

使用deb包安装类型 deb包指的其实就是debian系统&#xff0c;ubuntu系统是基于debian系统的发行版。 一般我们会到需要的软件官网下载deb安装包&#xff0c;然后你既可以采用使用“软件安装”打开的方法来进行安装&#xff0c;也可以使用命令行进行安装。我推荐后者&#xff…...

性能测试jmeter连接数据库jdbc(sql server举例)

一、下载第三方工具包驱动数据库 1. 因为JMeter本身没有提供链接数据库的功能&#xff0c;所以我们需要借助第三方的工具包来实现。 &#xff08;有这个jar包之后&#xff0c;jmeter可以发起jdbc请求&#xff0c;没有这个jar包&#xff0c;也有jdbc取样器&#xff0c;但不能发起…...

8.3 C高级 Shell脚本

写一个脚本&#xff0c;包含以下内容&#xff1a; 显示/etc/group文件中第五行的内容创建目录/home/ubuntu/copy切换工作路径到此目录赋值/etc/shadow到此目录&#xff0c;并重命名为test将当前目录中test的所属用户改为root将test中其他用户的权限改为没有任何权限 #!/bin/b…...

2023年华数杯A题

A 题 隔热材料的结构优化控制研究 新型隔热材料 A 具有优良的隔热特性&#xff0c;在航天、军工、石化、建筑、交通等 高科技领域中有着广泛的应用。 目前&#xff0c;由单根隔热材料 A 纤维编织成的织物&#xff0c;其热导率可以直接测出&#xff1b;但是 单根隔热材料 A 纤维…...

【零基础学Rust | 基础系列 | 函数,语句和表达式】函数的定义,使用和特性

文章标题 简介一&#xff0c;函数1&#xff0c;函数的定义2&#xff0c;函数的调用3&#xff0c;函数的参数4&#xff0c;函数的返回值 二&#xff0c;语句和表达式1&#xff0c;语句2&#xff0c;表达式 总结&#xff1a; 简介 在Rust编程中&#xff0c;函数&#xff0c;语句…...

加解密算法+压缩工具

sha256 工具类 package com.fanghui.vota.packages.util;import org.slf4j.Logger; import org.slf4j.LoggerFactory;import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; import java.math.BigInteger…...

FeignClient接口的几种方式总结

FeignClient这个注解&#xff0c;已经封装了远程调用协议。在springboot的开发&#xff0c;或者微服务的开发过程中&#xff0c;我们需要跨服务调用&#xff0c;或者调用外部的接口&#xff0c;我们都可以使用FeignClient。 一、FeignClient介绍 FeignClient 注解是 Spring Cl…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计&#xff0c;提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合&#xff1a;各模块职责清晰&#xff0c;便于独立开发…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 &#xff08;1&#xff09;确定回溯算法函数的参数和返回值&#xff08;一般是void类型&#xff09; &#xff08;2&#xff09;因为是用递归实现的&#xff0c;所以我们要确定终止条件 &#xff08;3&#xff09;单层搜索逻辑 二…...