当前位置: 首页 > news >正文

Meta AI研究团队新AI模型: Llama 2 大语言模型

在这里插入图片描述
在这里插入图片描述

Llama是Facebook Research团队开发的基础语言模型集,旨在提供广泛的语言理解能力。它基于转换器架构,参数范围从7B到65B。通过使用Llama模型,研究人员和开发人员可以构建更先进的自然语言处理系统。您可以在GitHub上找到相关的代码和资源,以帮助您开始使用Llama模型。

Llama是Facebook Research团队开发的一种基础语言模型集。您可以在GitHub上的找到相关代码和资源。Llama旨在提供具有广泛语言理解能力的预训练模型,以帮助研究人员和开发人员构建更先进的自然语言处理系统。

Llama 2 它基于转换器架构,该架构已经在自然语言处理领域取得了巨大的成功。
Llama的参数范围从7B到65B,这使得它成为一个非常大型和强大的语言模型集。通过在数万亿个令牌上进行训练,Llama模型可以学习到丰富的语言知识和语义理解能力。

使用Llama模型进行自然语言处理任务时,您可以将文本输入模型中,并获得模型对文本的理解和生成的结果。这些结果可以用于各种任务,如文本分类、命名实体识别、情感分析等。

Llama的开源发布为研究人员和开发人员提供了一个强大的基础模型集,可以用于构建自然语言处理系统和进行相关研究。您可以在GitHub上找到详细的文档、示例代码和使用指南,以帮助您开始使用Llama模型。
在这里插入图片描述

关于LLaMA模型架构的一些信息。LLaMA是一种基础语言模型集,具有广泛的语言理解能力。以下是对LLaMA模型架构的简要介绍:

基于转换器架构:LLaMA模型采用了转换器(Transformer)架构,这是一种在自然语言处理领域非常成功的架构。转换器架构通过自注意力机制(self-attention)和前馈神经网络层(feed-forward neural network)来实现对输入文本的编码和解码。

参数范围:LLaMA模型的参数范围从7B到65B,这使得它成为一个非常大型和强大的语言模型集。通过在数万亿个令牌上进行训练,LLaMA模型可以学习到丰富的语言知识和语义理解能力。

预训练数据:LLaMA模型的训练数据集使用了公开可用的数据集,但具体的数据集信息没有提供。模型的训练数据集大小为1.4T个tokens。

源码:https://github.com/facebookresearch/llama
论文:https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/

数据集

LLaMA模型使用了一些公开可用的数据集进行训练。具体的数据集包括但不限于以下几个:
Common Crawl:这是一个公开可用的网络抓取数据集,包含了大量的网页文本数据。
Wikipedia:LLaMA模型可能使用了维基百科的文章数据,这是一个广泛涵盖各种主题的在线百科全书。
C4:这是一个大规模的文本数据集,包含了从互联网上收集的各种文本数据。
需要注意的是,LLaMA模型的训练数据集可能还包括其他公开可用的数据源,但具体的数据集信息可能没有在搜索结果中提供。建议您参考相关资源、论文或官方文档,以获得更全面和详细的LLaMA模型训练数据集的介绍。

LLaMA模型使用的公开可用数据集覆盖了多个领域和主题。具体来说,LLaMA模型可能使用了以下类型的数据集:
Common Crawl:这是一个包含大量网络抓取数据的数据集,涵盖了各种领域和主题的文本数据。
Wikipedia:LLaMA模型可能使用了维基百科的文章数据,这是一个广泛涵盖各种主题的在线百科全书。
C4:这是一个大规模的文本数据集,包含了从互联网上收集的各种文本数据。
LLaMA模型的训练语料库是从这些公开可用的资源中组合而成的,具体的数据集组合和覆盖的领域或主题可能没有在搜索结果中提供详细信息。

参考

论文翻译:http://arthurchiao.art/blog/llama-paper-zh/

相关文章:

Meta AI研究团队新AI模型: Llama 2 大语言模型

Llama是Facebook Research团队开发的基础语言模型集,旨在提供广泛的语言理解能力。它基于转换器架构,参数范围从7B到65B。通过使用Llama模型,研究人员和开发人员可以构建更先进的自然语言处理系统。您可以在GitHub上找到相关的代码和资源&…...

CSS水平垂直居中

1.利用定位 margin:auto 2.flex布局 3.grid布局 一、利用positionmargin:auto <style>.outer {position: relative; /*父亲相对定位*/width: 200px;height: 200px;background-color: red;}.inner {position: absolute; /*儿子绝对定位*/top: 0;bottom: 0;left: 0;ri…...

Yolov8-pose关键点检测:模型部署篇 | yolov8-pose.onnx python推理

💡💡💡本文解决什么问题:Yolov8-pose关键点训练得到的模型转换成onnx格式在python下完成推理 Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_63774211/category_12398833.html ✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集; 🚀🚀�…...

Linux中提示No such file or directory解决方法

说明&#xff1a; 在linux下&#xff0c;./xxx.sh执行shell脚本时会提示No such file or directory。但shell明明存在&#xff0c;为什么就是会提示这个呢&#xff1f; 这种其实是因为编码方式不对&#xff0c;如你在win下编辑sh&#xff0c;然后直接复制到linux下面 实现&…...

Sklearn-使用SVC对iris数据集进行分类

Sklearn-使用SVC对iris数据集进行分类 iris数据集的加载训练svc模型输出混淆矩阵和分类报告使用Pipeline管道完成固定操作不使用Pipeline使用Pipeline 使用SVC对iris数据集进行分类预测 涉及内容包含&#xff1a; 数据集的加载,训练集和测试集的划分训练svc模型,对测试集的预测…...

项目经理必读:领导风格对项目成功的关键影响

引言 项目经理作为一个领导者的角色&#xff0c;他们需要协调各方资源&#xff0c;管理团队&#xff0c;推动项目的进行。为了完成这些任务&#xff0c;项目经理必须具备各种领导风格的灵活性&#xff0c;以应对项目中的各种变数和挑战。在这篇文章中&#xff0c;我们将讨论领…...

行业追踪,2023-08-04

自动复盘 2023-08-04 凡所有相&#xff0c;皆是虚妄。若见诸相非相&#xff0c;即见如来。 k 线图是最好的老师&#xff0c;每天持续发布板块的rps排名&#xff0c;追踪板块&#xff0c;板块来开仓&#xff0c;板块去清仓&#xff0c;丢弃自以为是的想法&#xff0c;板块去留让…...

双链表(带哨兵位头节点)

目录 ​编辑 双链表的初始化&#xff1a; 双链表的打印&#xff1a; 双链表的尾插&#xff1a; 双链表的头插&#xff1a; 双链表的尾删&#xff1a; 双链表的头删&#xff1a; 双链表pos位置之前的插入&#xff1a; 双链表pos位置的删除&#xff1a; 关于顺序表和链表…...

MySQL - LOAD DATA LOCAL INFILE将数据导入表中和 INTO OUTFILE (速度快)

文章目录 一、语法介绍二、数据分隔符介绍 :换行符说明&#xff1a; 三、示例LOAD DATA LOCAL INFILEINTO OUTFILE 总结 一、语法介绍 LOAD DATA[LOW_PRIORITY | CONCURRENT] [LOCAL]INFILE file_name[REPLACE | IGNORE]INTO TABLE tbl_name[PARTITION (partition_name [, par…...

String ,StringBulider ,StringBuffer

面试指北149 知乎 StringBuffer和StringBuilder区别详解&#xff08;Java面试&#xff09;_stringbuffer和stringbuilder的区别_辰兮要努力的博客-CSDN博客...

阶段总结(linux基础)

目录 一、初始linux系统 二、基本操作命令 三、目录结构 四、文件及目录管理命令 查看文件内容 创建文件 五、用户与组管理 六、文件权限与压缩管理 七、磁盘管理 八、系统程序与进程管理 管理机制 文件系统损坏 grub引导故障 磁盘资源耗尽 程序与进程的区别 查…...

HTTP(超文本传输协议)学习

关于HTTP补学 一、HTTP能干什么 通过下图能够直观的看出&#xff1a;“交换数据 ” 二、HTTP请求例子 一个 HTTP 方法&#xff0c;通常是由一个动词&#xff0c;像 GET、POST 等&#xff0c;或者一个名词&#xff0c;像 OPTIONS、HEAD 等&#xff0c;来定义客户端执行的动作。…...

23年7月工作笔记整理(前端)

目录 一、js相关二、业务场景学习 一、js相关 1.js中Number类型的最大值常量&#xff1a;Number.MAX_VALUE&#xff0c;最小值常量&#xff1a;Number.MIN_VALUE 2.巩固一下reduce语法&#xff1a;reduce(function(初始值或方法的返回值,当前值,当前值的索引,要累加的初始值))…...

pytorch学习——正则化技术——权重衰减

一、概念介绍 权重衰减&#xff08;Weight Decay&#xff09;是一种常用的正则化技术&#xff0c;它通过在损失函数中添加一个惩罚项来限制模型的复杂度&#xff0c;从而防止过拟合。 在训练参数化机器学习模型时&#xff0c; 权重衰减&#xff08;weight decay&#xff09;是…...

iTOP-RK3588开发板Ubuntu 系统交叉编译 Qt 工程-命令行交叉编译

使用源码 rk3588_linux/buildroot/output/rockchip_rk3588/host/bin/qmake 交叉编译 QT 工程。 最后烧写编译好的 buildroot 镜像&#xff0c;将编译好的 QT 工程可执行程序在 buildroot 系统上运行。 交叉编译 QT 工程如下所示&#xff0c;首先进入 QLed 的工程目录下。 然后…...

Java进阶——数据结构与算法之哈希表与树的入门小结(四)

文章大纲 引言一、哈希表1、哈希表概述2、哈希表的基本设计思想3、JDK中的哈希表的设计思想概述 二、树1、树的概述2、树的特点3、树的相关术语4、树的存储结构4.1、双亲表示法4.2、孩子兄弟表示法&#xff1a;4.3、孩子表示法&#xff1a;4.4、双亲孩子表示法 三、二叉树1、二…...

DataFrame中按某字段分类并且取该分类随机数量的数据

最近有个需求&#xff0c;把某个df中的数据&#xff0c;按照特定字段分类&#xff0c;并且每个分类只取随机数量数据&#xff0c;这个随机数量需要有范围限制。写出来记录下。 def randomCutData(self, df, startNum):grouped df.groupby(classify_label)df_sampled pd.Data…...

【c++】rand()随机函数的应用(一)——rand()函数详解和实例

c语言中可以用rand()函数生成随机数&#xff0c;今天来探讨一下rand()函数的基本用法和实际应用。 本系列文章共分两讲&#xff0c;今天主要介绍一下伪随机数生成的原理&#xff0c;以及在伪随机数生成的基础上&#xff0c;生成随机数的技巧&#xff0c;下一讲主要介绍无重复随…...

iOS——Block回调

先跟着我实现最简单的 Block 回调传参的使用&#xff0c;如果你能举一反三&#xff0c;基本上可以满足了 OC 中的开发需求。已经实现的同学可以跳到下一节。 首先解释一下我们例子要实现什么功能&#xff08;其实是烂大街又最形象的例子&#xff09;&#xff1a; 有两个视图控…...

html学习6(xhtml)

1、xhtml是以xml格式编写的html。 2、xhtml与html的文档结构区别&#xff1a; DOCTYPE是强制性的<html>、<head>、<title>、<body>也是强制性的<html>中xmlns属性是强制性的 3、 元素语法区别&#xff1a; xhtml元素必须正确嵌套xhtml元素必…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...