当前位置: 首页 > news >正文

每日学术速递2.17

CV - 计算机视觉 |  ML - 机器学习 |  RL - 强化学习 | NLP 自然语言处理 

 Subjects: cs.LG

1.Decoupled Model Schedule for Deep Learning Training

标题:深度学习训练的解耦模型时间表

作者:Hongzheng Chen, Cody Hao Yu, Shuai Zheng, Zhen Zhang, Zhiru Zhang, Yida Wang

文章链接:https://arxiv.org/abs/2302.08005v1

项目代码:https://github.com/awslabs/slapo

摘要:

        近年来,大型深度学习 (DL) 模型的开发有所增加,这使得训练效率变得至关重要。通常的做法是在可用性和性能之间进行权衡。一方面,诸如 PyTorch 之类的 DL 框架使用动态图来以次优模型训练性能为代价为模型开发人员提供便利。另一方面,从业者提出了各种通过牺牲一些灵活性来提高训练效率的方法,从使图静态化以进行更彻底的优化(例如 XLA)到针对大规模分布式训练进行定制优化(例如 DeepSpeed 和威震天-LM)。在本文中,我们的目标是通过关注点分离来解决可用性和训练效率之间的紧张关系。受将张量级运算符的平台特定优化与其算术定义分离的 DL 编译器的启发,本文提出了一种调度语言来将模型执行与定义分离。具体来说,调度在 PyTorch 模型上运行,并使用一组调度原语将模型转换为常见的模型训练优化,例如高性能内核、有效的 3D 并行性和高效的激活检查点。与现有的优化方案相比,我们通过高层原语按需优化模型,从而在很大程度上为用户保留了可编程性和可调试性。我们的评估结果表明,通过系统地安排现有的手工优化,我们能够在配备 8 个 NVIDIA V100 GPU 的单台机器上将训练吞吐量提高多达 3.35 倍,并提高多达 1.5 倍。与 DeepSpeed 和 Megatron-LM 的开箱即用性能相比,在具有多达 64 个 GPU 的多台机器上是 32 倍。

2.Assisting Human Decisions in Document Matching

标题:在文档匹配中协助人类决策

作者:Joon Sik Kim, Valerie Chen, Danish Pruthi, Nihar B. Shah, Ameet Talwalkar

文章链接:https://arxiv.org/abs/2302.08450v1

项目代码:https://github.com/wnstlr/document-matching

摘要:

        许多实际应用,从同行评审中的论文审稿人分配到招聘的求职者匹配,都需要人类决策者通过将他们的专业知识与机器学习模型的预测相结合来识别相关匹配。在许多此类模型辅助文档匹配任务中,决策者强调需要有关模型输出(或数据)的辅助信息以促进他们的决策。在本文中,我们设计了一个代理匹配任务,使我们能够评估哪些类型的辅助信息可以提高决策者的绩效(在准确性和时间方面)。通过一项众包(N=271 名参与者)研究,我们发现提供黑盒模型解释会降低用户在匹配任务上的准确性,这与人们普遍认为的可以通过更好地理解模型来提供帮助的信念相反。另一方面,发现旨在密切关注某些任务特定需求的自定义方法可有效提高用户性能。令人惊讶的是,我们还发现用户对辅助信息的感知效用与他们的客观效用(通过他们的任务绩效衡量)不一致。

Subjects: cs.CV

3.URCDC-Depth: Uncertainty Rectified Cross-Distillation with CutFlip for Monocular Depth Estimation

标题:URCDC-Depth:使用 CutFlip 进行不确定性校正交叉蒸馏以进行单眼深度估计

作者:Shuwei Shao, Zhongcai Pei, Weihai Chen, Ran Li, Zhong Liu, Zhengguo Li

文章链接:https://arxiv.org/abs/2302.08149v1

项目代码:https://github.com/shuweishao/urcdc-depth

摘要:

        这项工作旨在从单个 RGB 图像估计高质量的深度图。由于缺乏深度线索,充分利用长程相关性和局部信息对于准确的深度估计至关重要。为此,我们在 Transformer 和卷积神经网络 (CNN) 之间引入了不确定性校正交叉蒸馏,以学习统一的深度估计器。具体来说,我们使用从 Transformer 分支和 CNN 分支导出的深度估计作为伪标签来互相学习。同时,我们对像素级深度不确定性进行建模,以纠正噪声深度标签的损失权重。为了避免由强大的 Transformer 分支引起的巨大性能差距恶化交叉蒸馏,我们将特征映射从 Transformer 转移到 CNN 并设计耦合单元以协助弱 CNN 分支利用转移的特征。此外,我们提出了一种非常简单但非常有效的数据增强技术 CutFlip,它强制模型利用除了垂直图像位置的线索之外的更有价值的线索来进行深度估计。广泛的实验表明,我们的模型,称为 ~\textbf{URCDC-Depth},在 KITTI 和 NYU-Depth-v2 数据集上超过了以前最先进的方法,即使在推理时没有额外的计算负担。

更多Ai资讯:公主号AiCharm
在这里插入图片描述

相关文章:

每日学术速递2.17

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 Subjects: cs.LG 1.Decoupled Model Schedule for Deep Learning Training 标题:深度学习训练的解耦模型时间表 作者:Hongzheng Chen, Cody Hao Yu, Shuai Zheng, Zhen Zhang,…...

ElementUI`resetFields()`方法避坑

使用ElementUI中的resetFields()方法有哪些注意点 场景一 场景一:当编辑弹出框和新增弹出框共用时,编辑数据后关闭编辑弹出框时调用this.$refs.form.resetFields()无法清空弹出框 问题代码: // 点击新增按钮handleAdd() {this.dialogVi…...

如何保证数据库和缓存双写一致性?

前言 数据库和缓存(比如:redis)双写数据一致性问题,是一个跟开发语言无关的公共问题。尤其在高并发的场景下,这个问题变得更加严重。 我很负责的告诉大家,该问题无论在面试,还是工作中遇到的概率…...

Hinge Loss 和 Zero-One Loss

文章目录Hinge Loss 和 Zero-One LossHinge LossZero-One LossHinge Loss 和 Zero-One Loss 维基百科:https://en.wikipedia.org/wiki/Hinge_loss 图表说明: 纵轴表示固定 t1t1t1 的 Hinge loss(蓝色)和 Zero-One Loss&#xff…...

Linux下zabbix_proxy实施部署

简介 zabbix proxy 可以代替 zabbix server 收集性能和可用性数据,然后把数据汇报给 zabbix server,并且在一定程度上分担了zabbix server 的压力. zabbix-agent可以指向多个proxy或者server zabbix-proxy不能指向多个server zabbix proxy 使用场景: 1,监控远程区…...

Rust之错误处理(二):带结果信息的可恢复错误

开发环境 Windows 10Rust 1.67.1VS Code 1.75.1项目工程 这里继续沿用上次工程rust-demo 带结果信息的可恢复错误 大多数错误并没有严重到需要程序完全停止的程度。有时,当一个函数失败时,它的原因是你可以很容易地解释和应对的。例如,如…...

[ vulhub漏洞复现篇 ] Drupal Core 8 PECL YAML 反序列化任意代码执行漏洞(CVE-2017-6920)

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...

如何将数据库结构导入到word

在navicat执行查询语句 SELECT COLUMN_NAME 备注, COLUMN_COMMENT 名称, COLUMN_TYPE 数据类型, false as 是键 FROM INFORMATION_SCHEMA.COLUMNS where -- wx 为数据库名称,到时候只需要修改成你要导出表结构的数据库即可 table_schema yuncourt_ai AND -- articl…...

FreeRTOS内存管理 | FreeRTOS十五

目录 说明: 一、FreeRTOS内存管理 1.1、动态分配与用户分配内存空间 1.2、标准C库动态分配内存缺点 1.3、FreeRTOS的五种内存管理算法优缺点 1.4、heap_1内存管理算法 1.5、heap_2内存管理算法 1.6、heap_3内存管理算法 1.7、heap_4内存管理算法 1.8、hea…...

【数字电路】数字电路的学习核心

文章目录前言一、电子电路知识体系二、数电的学习目标三、数字电路分析例子四、数字电路设计例子总结前言 用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。现代…...

day45【代码随想录】动态规划之完全平方数、单词拆分、打家劫舍、打家劫舍 II

文章目录前言一、完全平方数(力扣279)二、单词拆分(力扣139)三、打家劫舍(力扣198)四、打家劫舍 II前言 1、完全平方数 2、单词拆分 3、打家劫舍 4、打家劫舍 II 一、完全平方数(力扣279&#…...

java程序,springboot程序 找不到主类,找不到符号解决思路

文章目录问题解决方案一.可以尝试clean掉maven依赖,然后重新启动二.右键工程,选择maven然后重新加载工程,接着再启动试试三.删掉工程中的services.iml文件,重新配置后接着再启动试试四. 终极方案清除idea缓存,重启idea…...

AntD-tree组件使用详析

目录 一、selectedKeys与onSelect 官方文档 代码演示 onSelect 注意事项 二、expandedKeys与onExpand 官方文档 代码演示 onExpand 注意事项 三、loadedKeys与onLoad和onExpand 官方文档 代码演示 onExpand与onLoad:​ 注意事项 四、loadData …...

spring的事务控制

1.调用这个方法的对象是否是spring的代理对象($CGLIB结尾的) 2.这个方法是否是加了Transactional注释 都符合才可以被事物控制 如果调用方法的对象没有被事物控制,那么被调用的方法即便是加了Transactional也是没用的 事务失效情况&#xf…...

4.如何靠IT逆袭大学?

学习的动力不止于此: IT逆袭 这两天利用工作空余时间读了贺利坚老师的《逆袭大学——传给 IT 学子的正能量》,感触很多,有些后悔没有好好利用大学时光。 不过人都是撞了南墙再回头的,吃一堑长一智。 这本书无论你是工作了还是…...

提供网络可测试的接口【公共Webservice】

提供网络可测试的接口 1、腾讯QQ在线状态 WEB 服务 Endpoint: qqOnlineWebService Web 服务 Disco: http://www.webxml.com.cn/webservices/qqOnlineWebService.asmx?disco WSDL: http://www.webxml.com.cn/webservices/qqOnlineWebService.asmx?wsdl 腾讯QQ在线状态 WEB 服…...

【深入理解计算机系统】库打桩 - 阅读笔记

文章目录库打桩机制1. 编译时打桩2. 链接时打桩3. 运行时打桩库打桩机制 Linux 链接器支持一个很强大的技术,称为库打桩 (library interpositioning),它允许你截获对共享库函数的调用,取而代之执行自己的代码。使用打桩机制,你可以…...

RocketMQ高性能原理分析

目录一、读队列与写队列1.概念介绍2.读写队列个数关系分析二、消息持久化1.持久化文件介绍2.持久化结构介绍:三、过期文件删除1.如何判断文件过期2.什么时候删除过期文件四、高效文件写1.零拷贝技术加速文件读写2.文件顺序写3.刷盘机制五、 消息主从复制六、负载均衡…...

前端面试当中CDN会问啥------CDN详细教程来啦

⼀、CDN 1. CDN的概念 CDN(Content Delivery Network,内容分发⽹络)是指⼀种通过互联⽹互相连接的电脑⽹络系统,利 ⽤最靠近每位⽤户的服务器,更快、更可靠地将⾳乐、图⽚、视频、应⽤程序及其他⽂件发送给⽤户&…...

刷题记录:牛客NC19429红球进黑洞 区间拆位异或+区间求和

传送门:牛客 题目描述: 区间求和区间异或k 输入: 10 10 8 5 8 9 3 9 8 3 3 6 2 1 4 1 1 2 6 2 9 10 8 1 1 7 2 4 7 8 2 8 8 6 2 2 3 0 1 1 2 2 9 10 4 1 2 3 输出: 33 50 13 13一道区间求和区间异或的题目,可以称得上是线段树的一道好题 首先对于异或运算来说,并不满足…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...