什么是OCR?OCR技术详解
光学字符识别(Optical Character Recognition)简称为“OCR”。ORC是指对包含文本资料的图像文件进行分析识别处理,获取文字及版面信息的技术。
一般包括以下几个过程:
1.图像输入
针对不同格式的图像,有着不同的存储格式和压缩方式。目前,用于存取图像的开源项目有OpenCV和CxImage等。
2.预处理
预处理主要包括二值化、噪声去除和倾斜较正,具体内容如下:
二值化:大多数情况下,使用摄像头拍摄的图片都是彩色图像,彩色图像包含的信息量非常丰富,需要进行简化。我们可以将图片的内容简单地分为前景和背景,为了让计算机更快地、更好地识别文字,需要先对彩色图像进行处理,使图片只剩下前景与背景信息,即简单地定义前景信息为黑色,背景信息为白色,这就是二值化图。彩色图像和二值化图像处理前后对比如图1所示。
噪声清除:对于不同的文档,噪声的定义可以不同。根据噪声的特征进行消除处理,这就叫做噪声去除。
倾斜校正:通常情况下,用户拍摄的照片比较随意,很有可能拍照文档会产生倾斜。这时,需要使用文字识别软件进行校正。
3.版面分析
将文档图片分段落、分行的过程叫做版面分析。由于实际文档的多样性和复杂性,目前没有一个固定的、最好的切割模型。
4.字符切割
由于拍照条件的限制,经常会造成字符粘连、断笔等情况,因此极大地限制了识别系统的性能。此时就需要文字识别软件具备字符切割的功能。
5.字符识别
很早的时候就有模板匹配,后来是以特征提取为主。由于文字的位移、笔画的粗细、断笔、粘连、旋转等因素的影响,极大地增加了提取的难度。
6.版面恢复
通常,人类希望识别后的文字,仍然按照原文档图片那样排列着,保持段落不变、位置不变、顺序不变,之后输出到Word文档或PDF文档,这个过程就叫做版面恢复。
7.后处理、核对
不同的语言环境中,语言的逻辑顺序是不同的。因此,需要根据语言特征的上下文,对识别后的结果进行校正,这个过程就是后处理。
相关文章:

什么是OCR?OCR技术详解
光学字符识别(Optical Character Recognition)简称为“OCR”。ORC是指对包含文本资料的图像文件进行分析识别处理,获取文字及版面信息的技术。 一般包括以下几个过程: 1.图像输入 针对不同格式的图像,有着不同的存储格式和压缩方式。目前&…...

【大模型】开源且可商用的大模型通义千问-7B(Qwen-7B)来了
【大模型】开源且可商用的大模型通义千问-7B(Qwen-7B)来了 新闻通义千问 - 7B 介绍评测表现快速使用环境要求安装相关的依赖库推荐安装flash-attention来提高你的运行效率以及降低显存占用使用 Transformers 运行模型使用 ModelScope 运行模型 量化长文本…...

SQL分类及通用语法数据类型
一、SQL分类 DDL: 数据定义语言,用来定义数据库对象(数据库、表、字段)DML: 数据操作语言,用来对数据库表中的数据进行增删改DQL: 数据查询语言,用来查询数据库中表的记录DCL: 数据控制语言,用来创建数据库…...

亿欧智库:2023中国功效型护肤产品成分解析研究报告(附下载
关于报告的所有内容,公众【营销人星球】获取下载查看 核心观点 消费端:“纯净美妆〞概念火热,消费驱动因素向成分来源硬核转变 新冠疫情过后,消费者对于生活健康:自然,可持续的关注度持续上升。在消费者…...
Kubernetes高可用集群二进制部署(一)主机准备和负载均衡器安装
Kubernetes概述 使用kubeadm快速部署一个k8s集群 Kubernetes高可用集群二进制部署(一)主机准备和负载均衡器安装 Kubernetes高可用集群二进制部署(二)ETCD集群部署 Kubernetes高可用集群二进制部署(三)部署…...

python与深度学习(十二):CNN和猫狗大战二
目录 1. 说明2. 猫狗大战的CNN模型测试2.1 导入相关库2.2 加载模型2.3 设置保存图片的路径2.4 加载图片2.5 图片预处理2.6 对图片进行预测2.7 显示图片 3. 完整代码和显示结果4. 多张图片进行测试的完整代码以及结果 1. 说明 本篇文章是对上篇文章猫狗大战训练的模型进行测试。…...

React(1)——快速入门
目录 一、React背景简介 ❤️ 官网和资料 📚 介绍描述 🐧 React的特点 🔨 React高效的原因 🙏🏻 二、React的基本使用 💻 三、React JSX(JSX:JavaScript XML)📦 …...

【论文】【生成对抗网络五】Wasserstein GAN (WGAN)
【题目、作者】: 紫色:要解决的问题或发现的问题 红色:重点内容 棕色:关联知识,名称 绿色:了解内容,说明内容 论文地址: 论文下载 本篇文章仅为原文翻译,仅作参考。…...
学习率Learn_rate是什么(深度学习)
学习率是指在训练神经网络时用于调整参数的步进大小,它决定了每次梯度更新时参数的调整程度。学习率的选择直接关系到模型的性能和训练过程的效果。 学习率变化可能带来的影响: 收敛速度:较高的学习率可以加快模型的收敛速度,因为…...

webpack基础知识五:说说Loader和Plugin的区别?编写Loader,Plugin的思路?
一、区别 前面两节我们有提到Loader与Plugin对应的概念,先来回顾下 loader 是文件加载器,能够加载资源文件,并对这些文件进行一些处理,诸如编译、压缩等,最终一起打包到指定的文件中plugin 赋予了 webpack 各种灵活的…...

AI大模型之花,绽放在鸿蒙沃土
随着生成式AI日益火爆,大语言模型能力引发了越来越多对于智慧语音助手的期待。 我们相信,AI大模型能力加持下的智慧语音助手一定会很快落地,这个预判不仅来自对AI大模型的观察,更来自对鸿蒙的了解。鸿蒙一定会很快升级大模型能力&…...

[JAVAee]锁策略
目录 乐观锁与悲观锁 乐观锁 乐观锁的冲突检测 悲观锁 读锁与写锁 重量级锁与轻量级锁 重量级锁 轻量级锁 自旋锁 公平锁与非公平锁 可重入锁与不可重入锁 乐观锁与悲观锁 乐观锁 在乐观锁中,假设数据并不会发生冲突,在正式提交数据时会对数据进行冲突检测,如果发…...
uni-app-使用tkiTree组件实现树形结构选择
前言 在实际开发中我们经常遇见树结构-比如楼层区域-组织架构-部门岗位-系统类型等情况 往往需要把这个树结构当成条件来查询数据,在PC端可以使用Tree,table,Treeselect等组件展示 在uni-app的内置组件中似乎没有提供这样组件来展示&#x…...

SQL-每日一题【1179. 重新格式化部门表】
题目 部门表 Department: 编写一个 SQL 查询来重新格式化表,使得新的表中有一个部门 id 列和一些对应 每个月 的收入(revenue)列。 查询结果格式如下面的示例所示: 解题思路 1.题目要求我们重新格式化表,…...
GO语言语法结构
GO语言结构 包声明引入包函数变量语句 && 表达式注释 package main import "fmt" func main() {fmt.Println("Hello,World!") } 如这段代码块根据上面的语法结构进行逐行解释 第一行的 package main 是定义一个包名,必须在源文件…...

C++学习——模板
目录 🍉一:什么是模板 🍎二:普通模板的定义 🍍三:类模板的定义 🍌四:模板的实例化 🍇1.当普通模板定义存在可修改返回值产生的分歧 🍈2:类模板实例…...

二叉树的遍历(先序遍历,中序遍历,后序遍历)递归与非递归算法
目录 一、先序遍历题目链接1.递归2.非递归 二、中序遍历题目链接1.递归2.非递归 三、后序遍历题目链接1.递归2.非递归 一、先序遍历 先序遍历:先遍历一颗树的根节点,后遍历左子树,最后遍历右子树 先序遍历序列: 1 -> 2 -> 4…...

【LeetCode】516. 最长回文子序列
文章目录 1. 思路讲解1.1 创建dp表1.2 状态转移方程1.3 不需考虑边界问题 2. 整体代码 1. 思路讲解 1.1 创建dp表 此题采用动态规划的方法,创建一个二维dp表,dp[i][j]表示s[i, j]中最大回文子序列的长度。且我们人为规定 i 是一定小于等于 j 的。 1.2…...

Java 集合框架
Java 集合框架提供了一组接口和类,以实现各种数据结构和算法。 集合框架满足以下几个要求。 该框架必须是高性能的。基本集合(动态数组,链表,树,哈希表)的实现也必须是高效的。 该框架允许不同类型的集合…...

遇到多人协作,我们该用git如何应对?(版本二)
一、多人协作二 1.1多人协作 一般情况下,如果有多需求需要多人同时进行开发,是不会在一个分支上进行多人开发,而是一个需求或一个功能点就要创建一个feature 分支。 现在同时有两个需求需要你和你的小伙伴进行开发,那么你们俩便…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...