【编程】典型题目:寻找数组第K大数(四种方法对比)
【编程】典型题目:寻找数组第K大数(四种方法对比)
文章目录
- 【编程】典型题目:寻找数组第K大数(四种方法对比)
- 1. 题目
- 2. 题解
- 2.1 方法一:全局排序(粗暴)
- 2.2 方法二:局部排序(略粗暴)
- 2.3 方法三:优先队列(合理)
- 2.4 方法四:快速排序(完美)
1. 题目

2. 题解
2.1 方法一:全局排序(粗暴)
使用C++中内置函数sort进行全局排序,再取第K大值:
class Solution {
public:int findKth(vector<int> a, int n, int K) {sort(a.begin(), a.end());return a[n-K];}
};
- 复杂度:O(n log n)
2.2 方法二:局部排序(略粗暴)
使用冒泡排序的思想,每次将最大的值放在数组尾部,直到第K个:
class Solution {
public:int findKth(vector<int> a, int n, int K) {for(int i=0; i<K; ++i){for(int j=0; j<n-i-1; ++j){if(a[j]>a[j+1]){int temp = a[j];a[j] = a[j+1];a[j+1] = temp;}}}return a[n-K];}
};
- 复杂度:O(nk)
2.3 方法三:优先队列(合理)
小根堆,维护一个大小为k的小根堆:
class Solution {
public:int findKth(vector<int> a, int n, int K) {priority_queue <int, deque<int>, greater<int>> nums; //队首最小,从小到大排序for(int i=0; i<n; ++i){if(i<K){nums.push(a[i]);}else{if(a[i]>nums.top()){nums.pop();nums.push(a[i]);}}}return nums.top();}
};
- 复杂度:O(n logk)
2.4 方法四:快速排序(完美)
快排思想:通过一趟排序将待排序元素分成独立的两部分,其中一部分记录的元素均比另一部分记录的元素要小,则可分别对这两部分记录继续进行排序,直到整个序列有序为止。具体做法如下:
- 首先选取基准元素base(首元素,中间元素,最后元素,随机元素等等)。
- 以基准元素为基准,将小于基准元素的元素放在前面,大于基准元素的放在后面。
- 然后以基准元素为界限,分为两组数据。
- 两组元素重复1、2和3步骤,直至比较排序完成。
快排的最坏运行时间为O(n^2),平均运行时间为O(nlogn)。由于跳跃式交换比较,故不稳定(稳定是指:值一样的原始顺序保持不变)。
针对这道题,递归直到 base 右边有k-1个数,停止即可。
class Solution {
public:vector<int> quickSort(vector<int>&nums, int start, int end, int K){if (start >= end) return nums;int base = nums[start];int i = start;int j = end;while (i < j){while (i < j && nums[j] >= base) j--; //从右往左,寻找比base小的数swap(nums[i], nums[j]);while (i < j && nums[i] <= base) i++;swap(nums[i], nums[j]);}if(nums.size()-i<K) //如果base右边的数超过K个,则第K大数肯定在base右边,此时就不需要对base左边的进行排序quickSort(nums, start, i - 1, K);quickSort(nums, i + 1, end, K);return nums;}int findKth(vector<int> a, int n, int K) {quickSort(a, 0, n-1, K);return a[n-K];}
};
- 时间复杂度:最坏O(n log n),最好O(n)
相关文章:
【编程】典型题目:寻找数组第K大数(四种方法对比)
【编程】典型题目:寻找数组第K大数(四种方法对比) 文章目录 【编程】典型题目:寻找数组第K大数(四种方法对比)1. 题目2. 题解2.1 方法一:全局排序(粗暴)2.2 方法二&#…...
Vue3 对比 Vue2 的变化
Vue3 对比 Vue2 的变化 1.源码组织方式变化:使用 TS 重写 2.支持 compositionAPI,基于函数的 api,更灵活组织组件逻辑(Vue2 使用 options api) 3.响应式系统提升:Vue3 的响应式数据原理改成了 Proxy,可以监听动态新增删…...
harbor搭建
回到目录 Harbor 是 VMware 公司开源的企业级 Docker Registry 项目,其目标是帮助用户迅速搭建一个企业级的 Docker Registry 服务 通俗的讲,harbor是一个私人镜像存储服务器 1 下载安装 进入官网,下载一个离线安装包,harbor官网下载 这…...
机器学习05-数据准备(利用 scikit-learn基于Pima Indian数据集作数据预处理)
机器学习的数据准备是指在将数据用于机器学习算法之前,对原始数据进行预处理、清洗和转换的过程。数据准备是机器学习中非常重要的一步,它直接影响了模型的性能和预测结果的准确性 以下是机器学习数据准备的一些常见步骤: 数据收集ÿ…...
【枚举+trie+dfs】CF514 C
Problem - 514C - Codeforces 题意: 思路: 其实是trie上dfs的板题 先把字符串插入到字典树中 对于每次询问,都去字典树上dfs 注意到字符集只有3,因此如果发现有不同的字符,去枚举新的字符 Code: #in…...
【计算机视觉】BLIP:统一理解和生成的自举多模态模型
文章目录 一、导读二、背景和动机三、方法3.1 模型架构3.2 预训练目标3.3 BLIP 高效率利用噪声网络数据的方法:CapFilt 四、实验4.1 实验结果4.2 各个下游任务 BLIP 与其他 VLP 模型的对比 一、导读 BLIP 是一种多模态 Transformer 模型,主要针对以往的…...
【Ansible】Ansible自动化运维工具之playbook剧本搭建LNMP架构
LNMP 一、playbooks 分布式部署 LNMP1. 环境配置2. 安装 ansble3. 安装 nginx3.1 准备 nginx 相关文件3.2 编写 lnmp.yaml 的 nginx 部分3.3 测试 nginx4. 安装 mysql4.1 准备 mysql 相关文件4.2 编写 lnmp.yaml 的 mysql 部分4.3 测试 mysql5. 安装 php5.1 编写 lnmp.yaml 的 …...
Spring中的事务
一、为什么需要事务? 事务定义 将一组操作封装成一个执行单元(封装到一起),要么全部成功,要么全部失败。 为什么要用事务? 比如转账分为两个操作: 第一步操作: A 账户 -100 元…...
38 非法地址访问的 segment fault 的调试
前言 在前面一篇文章 coredump 的生成和使用 中, 我们看到 "测试用例2 - 非法地址访问" 产生了一个 segment fault 我们这里 就来调试一下 这个 segment fault 是怎么回事 测试用例 #include "stdio.h"int main(int argc, char** argv) {int x 2; i…...
c++中c_str()的用法详解
c_str()就是将C的string转化为C的字符串数组!!! C中没有string,所以函数c_str()就是将C的string转化为C的字符串数组,c_str()生成一个const char *指针,指向字符串的首地址。 下文通过3段简单的代码比较分析…...
谈谈关于新能源汽车的话题
新能源汽车是指使用新型能源替代传统燃油的汽车,主要包括纯电动汽车、插电式混合动力汽车和燃料电池汽车等。随着环境污染和能源安全问题的日益突出,新能源汽车已经成为全球汽车行业的发展趋势。下面我们来谈谈关于新能源汽车的话题。 首先,新…...
EventBus 开源库学习(二)
整体流程阅读 EventBus在使用的时候基本分为以下几步: 1、注册订阅者 EventBus.getDefault().register(this);2、订阅者解注册,否者会导致内存泄漏 EventBus.getDefault().unregister(this);3、在订阅者中编写注解为Subscribe的事件处理函数 Subscri…...
4_Apollo4BlueLite电源管理
1.Cortex-M4 Power Modes Apollo4BlueLite支持以下4种功耗模式: ▪ High Performance Active (not a differentiated power mode for the Cortex-M4) ▪ Active ▪ Sleep ▪ Deep Sleep (1)High Performance Mode 高性能模式不是arm定…...
Pytorch入门学习——快速搭建神经网络、优化器、梯度计算
我的代码可以在我的Github找到 GIthub地址 https://github.com/QinghongShao-sqh/Pytorch_Study 因为最近有同学问我如何Nerf入门,这里就简单给出一些我的建议: (1)基本的pytorch,机器学习,深度学习知识&a…...
举例说明typescript的Exclude、Omit、Pick
一、提前知识说明:联合类型 typescript的联合类型是一种用于表示一个值可以是多种类型中的一种的类型。我们使用竖线(|)来分隔每个类型,所以number | string | boolean是一个可以是number,string或boolean的值的类型。…...
记录一次Linux环境下遇到“段错误核心已转储”然后利用core文件解决问题的过程
参考Linux 下Coredump分析与配置 在做项目的时候,很容易遇到“段错误(核心已转储)”的问题。如果是语法错误还可以很快排查出来问题,但是碰到coredump就没办法直接找到问题,可以通过设置core文件来查找问题࿰…...
WPF中自定义Loading图
纯前端方式,通过动画实现Loading样式,如图所示 <Grid Width"35" Height"35" HorizontalAlignment"Center" VerticalAlignment"Center" Name"Loading"><Grid.Resources><DrawingBrus…...
用html+javascript打造公文一键排版系统14:为半角和全角字符相互转换功能增加英文字母、阿拉伯数字、标点符号、空格选项
一、实际工作中需要对转换选项细化内容 在昨天我们实现了最简单的半角字符和全角字符相互转换功能,就是将英文字母、阿拉伯数字、标点符号、空格全部进行转换。 在实际工作中,我们有时只想英文字母、阿拉伯数字、标点符号、空格之中的一两类进行转换&a…...
叮咚买菜财报分析:叮咚买菜第二季度财报将低于市场预期
来源:猛兽财经 作者:猛兽财经 卖方分析师对叮咚买菜第二季度财报的预测 尽管叮咚买菜(DDL)尚未明确披露第二季度财报的具体日期,但根据其以往的业绩公告,猛兽财经认为叮咚买菜很有可能会在8月的第二周发布…...
设计模式行为型——中介者模式
目录 什么是中介者模式 中介者模式的实现 中介者模式角色 中介者模式类图 中介者模式代码实现 中介者模式的特点 优点 缺点 使用场景 注意事项 实际应用 什么是中介者模式 中介者模式(Mediator Pattern)属于行为型模式,是用来降低…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
