harbor搭建
回到目录
Harbor 是 VMware 公司开源的企业级 Docker Registry 项目,其目标是帮助用户迅速搭建一个企业级的 Docker Registry 服务
通俗的讲,harbor是一个私人镜像存储服务器
1 下载安装
进入官网,下载一个离线安装包,harbor官网下载
这里选择当前最新版本为:harbor-offline-installer-v2.8.2.tgz
1.1 完成后,解压
root@k8s-work1 harbor]# ls
harbor-offline-installer-v2.8.2.tgz[root@k8s-work1 harbor]# tar -zxvf harbor-offline-installer-v2.8.2.tgz
harbor/harbor.v2.8.2.tar.gz
harbor/prepare
harbor/LICENSE
harbor/install.sh
harbor/common.sh
harbor/harbor.yml.tmpl[root@k8s-work1 harbor]# ls
harbor harbor-offline-installer-v2.8.2.tgz[root@k8s-work1 harbor]# cd harbor/
[root@k8s-work1 harbor]# ls
common.sh harbor.v2.8.2.tar.gz harbor.yml.tmpl install.sh LICENSE prepare
1.2 修改配置文件
修改复制一份harbor.yml.tmpl 重命名为harbor.yml
修改harbor.yml
-
hostname修改为安装harbor的服务器ip
-
修改port为8858或者自定义其他
-
修改密码为1234Qwer或者其他
-
注释https部分
hostname: 10.1.57.201# http related config
http:# port for http, default is 80. If https enabled, this port will redirect to https portport: 8858# https related config
#https:# https port for harbor, default is 443
# port: 443# The path of cert and key files for nginx
# certificate: /your/certificate/path
# private_key: /your/private/key/path
harbor_admin_password: 1234Qwer
1.3 执行install.sh命令
#出现successfully说明安装成功
✔ Container harbor-jobservice Started
✔ ----Harbor has been installed and started successfully.----
2 访问UI
服务器ip:port
用户名admin
密码harbor.yml中修改密码
3 docker添加仓库
在k8s集群中每个节点的docker添加harbor仓库
每个节点的docker中daemon.json添加harbor地址
地址具体为安装harbor的服务器的ip和短裤
注意:ip为服务器的公网ip,如果是通过zerotier搭建的私网ip也可以,总之,确保k8s集群节点能够正常访问该ip
{"insecure-registries": ["30.13.4.55:8858"],}
配置生效
systemctl daemon-reload
systemctl restart docker
验证
在k8s集群节点上操作,docker 登陆到harbor
[root@k8s-work1 harbor]# docker login -uadmin ip:port
Password:
WARNING! Your password will be stored unencrypted in /root/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-storeLogin Succeeded
相关文章:

harbor搭建
回到目录 Harbor 是 VMware 公司开源的企业级 Docker Registry 项目,其目标是帮助用户迅速搭建一个企业级的 Docker Registry 服务 通俗的讲,harbor是一个私人镜像存储服务器 1 下载安装 进入官网,下载一个离线安装包,harbor官网下载 这…...
机器学习05-数据准备(利用 scikit-learn基于Pima Indian数据集作数据预处理)
机器学习的数据准备是指在将数据用于机器学习算法之前,对原始数据进行预处理、清洗和转换的过程。数据准备是机器学习中非常重要的一步,它直接影响了模型的性能和预测结果的准确性 以下是机器学习数据准备的一些常见步骤: 数据收集ÿ…...

【枚举+trie+dfs】CF514 C
Problem - 514C - Codeforces 题意: 思路: 其实是trie上dfs的板题 先把字符串插入到字典树中 对于每次询问,都去字典树上dfs 注意到字符集只有3,因此如果发现有不同的字符,去枚举新的字符 Code: #in…...

【计算机视觉】BLIP:统一理解和生成的自举多模态模型
文章目录 一、导读二、背景和动机三、方法3.1 模型架构3.2 预训练目标3.3 BLIP 高效率利用噪声网络数据的方法:CapFilt 四、实验4.1 实验结果4.2 各个下游任务 BLIP 与其他 VLP 模型的对比 一、导读 BLIP 是一种多模态 Transformer 模型,主要针对以往的…...

【Ansible】Ansible自动化运维工具之playbook剧本搭建LNMP架构
LNMP 一、playbooks 分布式部署 LNMP1. 环境配置2. 安装 ansble3. 安装 nginx3.1 准备 nginx 相关文件3.2 编写 lnmp.yaml 的 nginx 部分3.3 测试 nginx4. 安装 mysql4.1 准备 mysql 相关文件4.2 编写 lnmp.yaml 的 mysql 部分4.3 测试 mysql5. 安装 php5.1 编写 lnmp.yaml 的 …...

Spring中的事务
一、为什么需要事务? 事务定义 将一组操作封装成一个执行单元(封装到一起),要么全部成功,要么全部失败。 为什么要用事务? 比如转账分为两个操作: 第一步操作: A 账户 -100 元…...

38 非法地址访问的 segment fault 的调试
前言 在前面一篇文章 coredump 的生成和使用 中, 我们看到 "测试用例2 - 非法地址访问" 产生了一个 segment fault 我们这里 就来调试一下 这个 segment fault 是怎么回事 测试用例 #include "stdio.h"int main(int argc, char** argv) {int x 2; i…...
c++中c_str()的用法详解
c_str()就是将C的string转化为C的字符串数组!!! C中没有string,所以函数c_str()就是将C的string转化为C的字符串数组,c_str()生成一个const char *指针,指向字符串的首地址。 下文通过3段简单的代码比较分析…...

谈谈关于新能源汽车的话题
新能源汽车是指使用新型能源替代传统燃油的汽车,主要包括纯电动汽车、插电式混合动力汽车和燃料电池汽车等。随着环境污染和能源安全问题的日益突出,新能源汽车已经成为全球汽车行业的发展趋势。下面我们来谈谈关于新能源汽车的话题。 首先,新…...
EventBus 开源库学习(二)
整体流程阅读 EventBus在使用的时候基本分为以下几步: 1、注册订阅者 EventBus.getDefault().register(this);2、订阅者解注册,否者会导致内存泄漏 EventBus.getDefault().unregister(this);3、在订阅者中编写注解为Subscribe的事件处理函数 Subscri…...
4_Apollo4BlueLite电源管理
1.Cortex-M4 Power Modes Apollo4BlueLite支持以下4种功耗模式: ▪ High Performance Active (not a differentiated power mode for the Cortex-M4) ▪ Active ▪ Sleep ▪ Deep Sleep (1)High Performance Mode 高性能模式不是arm定…...

Pytorch入门学习——快速搭建神经网络、优化器、梯度计算
我的代码可以在我的Github找到 GIthub地址 https://github.com/QinghongShao-sqh/Pytorch_Study 因为最近有同学问我如何Nerf入门,这里就简单给出一些我的建议: (1)基本的pytorch,机器学习,深度学习知识&a…...
举例说明typescript的Exclude、Omit、Pick
一、提前知识说明:联合类型 typescript的联合类型是一种用于表示一个值可以是多种类型中的一种的类型。我们使用竖线(|)来分隔每个类型,所以number | string | boolean是一个可以是number,string或boolean的值的类型。…...

记录一次Linux环境下遇到“段错误核心已转储”然后利用core文件解决问题的过程
参考Linux 下Coredump分析与配置 在做项目的时候,很容易遇到“段错误(核心已转储)”的问题。如果是语法错误还可以很快排查出来问题,但是碰到coredump就没办法直接找到问题,可以通过设置core文件来查找问题࿰…...

WPF中自定义Loading图
纯前端方式,通过动画实现Loading样式,如图所示 <Grid Width"35" Height"35" HorizontalAlignment"Center" VerticalAlignment"Center" Name"Loading"><Grid.Resources><DrawingBrus…...

用html+javascript打造公文一键排版系统14:为半角和全角字符相互转换功能增加英文字母、阿拉伯数字、标点符号、空格选项
一、实际工作中需要对转换选项细化内容 在昨天我们实现了最简单的半角字符和全角字符相互转换功能,就是将英文字母、阿拉伯数字、标点符号、空格全部进行转换。 在实际工作中,我们有时只想英文字母、阿拉伯数字、标点符号、空格之中的一两类进行转换&a…...

叮咚买菜财报分析:叮咚买菜第二季度财报将低于市场预期
来源:猛兽财经 作者:猛兽财经 卖方分析师对叮咚买菜第二季度财报的预测 尽管叮咚买菜(DDL)尚未明确披露第二季度财报的具体日期,但根据其以往的业绩公告,猛兽财经认为叮咚买菜很有可能会在8月的第二周发布…...

设计模式行为型——中介者模式
目录 什么是中介者模式 中介者模式的实现 中介者模式角色 中介者模式类图 中介者模式代码实现 中介者模式的特点 优点 缺点 使用场景 注意事项 实际应用 什么是中介者模式 中介者模式(Mediator Pattern)属于行为型模式,是用来降低…...

Vue——formcreate表单设计器自定义组件实现(二)
前面我写过一个自定义电子签名的formcreate表单设计器组件,那时初识formcreate各种使用也颇为生疏,不过总算套出了一个组件不是。此次时隔半年又有机会接触formcreate,重新熟悉和领悟了一番各个方法和使用指南。趁热打铁将此次心得再次分享。…...
人脸验证(Face verification) 和 人脸识别(Face recognition) 的区别
人脸验证(Face verification) 和 人脸识别(Face recognition) 的区别 Face verification 和 Face recognition 都是人脸识别的技术,但是它们的应用和目的不同。 Face verification(人脸验证)是指通过比对两张人脸图像,判断它们是…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...