215. 数组中的第K个最大元素(快排+大根堆+小根堆)
题目链接:力扣
解题思路:
方法一:基于快速排序
因为题目中只需要找到第k大的元素,而快速排序中,每一趟排序都可以确定一个最终元素的位置。
当使用快速排序对数组进行降序排序时,那么如果有一趟排序过程中,确定元素的最终位置为k-1(索引从0开始),那么,该元素就是第k大的元素。
具体思想下:
- 利用快排,对数组num[left,...,right]进行降序排序,在一趟排序过程中,可以确定一个元素的最终位置p,将数组划分为三部分,num[left,...,p-1],nums[p],nums[p+1,right],并且满足
- num[left,...,p-1] >= nums[p]
- num[p+1,right] <=nums[p]
- 即p位置以前的元素是数组中比p位置元素大的元素(此时p位置以前的元素不一定有序,但是肯定都大于等于p位置的元素),而num[p]是第p+1大的元素
- 因为需要找到的是第k大的元素:
- 如果k < p,那么第k大的元素肯定在num[left,...,p-1]内,这个时候只需要对右半部分区间进行快排
- 如果k > p,那么第k大的元素肯定在nums[p+1,right]区间内,这个时候只需要对左半部分区间进行快排
- 如果 p= k-1,那么nums[p]就是第k大的元素
- 注意这种方式并不要求最终数组中的元素有序,每次只会对左半部分或者右半部分进行快排,减少了一半的快排调用
AC代码:
class Solution {public static int findKthLargest(int[] nums, int k) {return quickSortFindK(nums, 0, nums.length - 1, k);}public static int quickSortFindK(int[] nums, int left, int right, int k) {//选取枢轴元素int pivot = nums[left];int low = left;int high = right;while (low < high) {while (low < high && nums[high] <= pivot)high--;nums[low] = nums[high];while (low < high && nums[low] >= pivot)low++;nums[high] = nums[low];}//low(或者right)就是这趟排序中枢轴元素的最终位置nums[low] = pivot;if (low == k - 1) {return pivot;} else if (low > k - 1) {return quickSortFindK(nums, left, low - 1, k);} else {return quickSortFindK(nums, low + 1, right, k);}}
}
快速排序的最好时间复杂度是O(nlogn),最坏时间复杂度为O(n^2),平均时间复杂度为O(nlogn)
快速排序在元素有序的情况下效率是最低。
不过可以通过在某些情况下,快速排序可以达到期望为线性的时间复杂度,即O(n),也就是在每次排序前随机的交换两个元素(个人理解可能是为了让元素变乱,不那么有序,越乱越快,算法导论中在9.2 期望为线性的选择算法进行了证明,还没有学习,先在此记录下),它的时间代价的期望是 O(n)
具体代码实现,就是在排序前,加上下面的代码
//随机生成一个位置,该位置的范围为[left,right]
//然后将该位置的元素与最后一个元素进行交换,让数组变得不那么有序,
//放置出现有序的情况下快排的时间复杂度退化为o(n^2)
int randomIndex = random.nextInt(right - left + 1) + left;
int tem = nums[randomIndex];
nums[randomIndex] = nums[right];
nums[right] = tem;
AC代码:
class Solution {static Random random = new Random();public static int findKthLargest(int[] nums, int k) {return quickSortFindK(nums, 0, nums.length - 1, k);}public static int quickSortFindK(int[] nums, int left, int right, int k) {int randomIndex = random.nextInt(right - left + 1) + left;int tem = nums[randomIndex];nums[randomIndex] = nums[right];nums[right] = tem;int pivot = nums[left];int low = left;int high = right;while (low < high) {while (low < high && nums[high] <= pivot)high--;nums[low] = nums[high];while (low < high && nums[low] >= pivot)low++;nums[high] = nums[low];}nums[low] = pivot;if (low == k - 1) {return pivot;} else if (low > k - 1) {return quickSortFindK(nums, left, low - 1, k);} else {return quickSortFindK(nums, low + 1, right, k);}}
}
时间上确实有了一些提升
解法二:堆排序。
建立小根堆,最后让小根堆里的元素个数保持在k个,那么此时栈顶的元素就是k个元素中最小的,即第k大的元素
可以通过优先级队列来模拟小根堆
AC代码
class Solution {public int findKthLargest(int[] nums, int k) {PriorityQueue<Integer> queue = new PriorityQueue<>();for (int num : nums) {//已经有k个元素了,当前元素比堆顶元素还小,不可能是第k大的元素,跳过if (queue.size()==k&&queue.peek()>=num){continue;}queue.offer(num);}while (queue.size()>k){queue.poll();}return queue.peek();}
}
解法三:大根堆
- 对于区间[0,n]建立大根堆后,此时堆顶元素nums[0]为最大值,可以将堆顶元素与最后一个元素交换,即将最大值移动到数组最后,
- 然后将[0,n-1]区间调整为大根堆,此时堆顶nums[0]就是第二大的值,将堆顶元素与倒数第二个元素交换,即倒数第二大的值移动到数组倒数第二个位置
- 然后将[0,n-2]区间调整为大根堆...
- 调整 k-1此后的大根堆,此时的堆顶元素就是第k大的元素
大根堆可以使用优先级队列实现,传递一个降序的比较器。
这里复习下堆排序,手动写了一个大根堆
AC代码:
class Solution {public static int findKthLargest(int[] nums, int k) {createHeap(nums);for (int i = nums.length - 1; i > nums.length - k; i--) {int tem = nums[0];nums[0] = nums[i];nums[i] = tem;heapAdjust(nums, 0, i - 1);}return nums[0];}//建初堆public static void createHeap(int[] nums) {for (int i = nums.length / 2 - 1; i >= 0; i--) {heapAdjust(nums, i, nums.length-1);}}/*调整成大根堆nums[begin+1,end]已经是大根堆,将nums[begin,end]调整为以nums[begin]为根的大根堆*/public static void heapAdjust(int[] nums, int begin, int end) {int tem = nums[begin];for (int i = 2 * begin + 1; i <= end; i = i * 2 + 1) {if (i+1 <= end && nums[i] < nums[i+1])//j为左右子树中较大的子树的下标i++;//tem大于左右子树,已经是大根堆,退出if (tem >= nums[i])break;nums[begin] = nums[i];//更新待插入的位置begin = i;}//tem应该存放的位置nums[begin] = tem;}
}
相关文章:

215. 数组中的第K个最大元素(快排+大根堆+小根堆)
题目链接:力扣 解题思路: 方法一:基于快速排序 因为题目中只需要找到第k大的元素,而快速排序中,每一趟排序都可以确定一个最终元素的位置。 当使用快速排序对数组进行降序排序时,那么如果有一趟排序过程…...

Ubuntu18.04配置ZED_SDK 4.0, 安装Nvidia显卡驱动、cuda12.1
卸载错误的显卡驱动、cuda 首先卸载nvidia相关的、卸载cuda sudo apt-get purge nvidia* sudo apt-get autoremove sudo apt-get remove --auto remove nvidia-cuda-toolkit sudo apt-get purge nvidia-cuda-toolkit 官方卸载cuda的方法: sudo apt-get --purge re…...

张量Tensor 深度学习
1 张量的定义 张量tensor理论是数学的一个分支学科,在力学中有重要的应用。张量这一术语源于力学,最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力数学工具。 张量(Tensor)是一个…...
用Rust实现23种设计模式之桥接模式
桥接模式的优点: 桥接模式的设计目标是将抽象部分和实现部分分离,使它们可以独立变化。这种分离有以下几个优点: 解耦和灵活性:桥接模式可以将抽象部分和实现部分解耦,使它们可以独立地变化。这样,对于抽象…...

扩散模型实战(一):基本原理介绍
扩散模型(Diffusion Model)是⼀类⼗分先进的基于物理热⼒学中的扩散思想的深度学习⽣成模型,主要包括前向扩散和反向扩散两个过程。⽣成模型除了扩散模型之外,还有出现较早的VAE(Variational Auto-Encoder,…...
解决npm ERR! code ERESOLVE -npm ERR! ERESOLVE could not resolve
当使用一份vue源码开发项目时,npm install 报错了 npm ERR! code ERESOLVEnpm ERR! ERESOLVE could not resolvenpm ERR!npm ERR! While resolving: vue-admin-template4.4.0npm ERR! Found: webpack4.46.0npm ERR! node_modules/webpacknpm ERR! webpack"^4.0…...

HttpServletRequest和HttpServletResponse的获取与使用
相关笔记:【JavaWeb之Servlet】 文章目录 1、Servlet复习2、HttpServletRequest的使用3、HttpServletResponse的使用4、获取HttpServletRequest和HttpServletResponse 1、Servlet复习 Servlet是JavaWeb的三大组件之一: ServletFilter 过滤器Listener 监…...

css在线代码生成器
这里收集了许多有意思的css效果在线代码生成器适合每一位前端开发者 布局,效果类: 网格生成器https://cssgrid-generator.netlify.app/ CSS Grid Generator可帮助开发人员使用CSS Grid创建复杂的网格布局。网格布局是创建Web页面的灵活和响应式设计的强…...

在java中如何使用openOffice进行格式转换,word,excel,ppt,pdf互相转换
1.首先需要下载并安装openOffice,下载地址为: Apache OpenOffice download | SourceForge.net 2.安装后,可以测试下是否可用; 3.build.gradle中引入依赖: implementation group: com.artofsolving, name: jodconverter, version:…...

手机变电脑2023之虚拟电脑droidvm
手机这么大的内存,装个app来模拟linux,还是没问题的。 app 装好后,手指点几下确定按钮,等几分钟就能把linux桌面环境安装好。 不需要敲指令, 不需要对手机刷机, 不需要特殊权限, 不需要找驱…...

HDFS中的sequence file
sequence file序列化文件 介绍优缺点格式未压缩格式基于record压缩格式基于block压缩格式 介绍 sequence file是hadoop提供的一种二进制文件存储格式一条数据称之为record(记录),底层直接以<key, value>键值对形式序列化到文件中 优…...

【MySQL】检索数据使用数据处理函数
函数 与其他大多数计算机语言一样,SQL支持利用函数来处理数据。函数一般是在数据上执行的,它给数据的转换和处理提供了方便。 函数没有SQL的可移植性强:能运行在多个系统上的代码称为可移植的。多数SQL语句是可移植的,而函数的可…...

【嵌入式学习笔记】嵌入式入门6——定时器TIMER
1.定时器概述 1.1.软件定时原理 使用纯软件(CPU死等)的方式实现定时(延时)功能有诸多缺点,如CPU死等、延时不精准。 void delay_us(uint32_t us) {us * 72;while(us--); }1.2.定时器定时原理 使用精准的时基&#…...

GD32F103输入捕获
GD32F103输入捕获程序,经过多次测试,终于完成了。本程序将TIMER2_CH2通道映射到PB0引脚,捕获PB0引脚低电平脉冲时间宽度。PB0是一个按钮,第1次按下采集一个值保存到TIMER2_CountValue1中,第2次按下采集一个值保存到TIM…...

[RT-Thread]基于ARTPI的文件系统认识与搭建
[写作为了记忆,个人最终输出的内容往往是遗忘后最容易捡起的内容,故以此作文] 目录 [写作为了记忆,个人最终输出的内容往往是遗忘后最容易捡起的内容,故以此作文] 前提 内容 认识 基于ARTPI的文件系统的挂载 ROMFS与LFS. (默认自动挂载,romfs可读不可写) 搭…...
动态规划+二分查找
题目描述:给定一个区间数组,[[1,2,3],[3,4,2],[2,4,4]],每个区间有价值,求在获取k个区间的条件下面,求获得的最大的价值,关键是dp的定义和二分查找的写法(小于tar额最右下标) import…...
8.2小非农ADP数据来袭黄金将会如何表现?
近期有哪些消息面影响黄金走势?黄金多空该如何研判? 黄金消息面解析: 周二(8月1日)现货黄金价格回落,原因是美元指数升创7月10日以来新高至102.43.美联储官员乐观言论夯实美国经济软着陆预期。此外,中国刺激措施将…...
linux启动oracle
一、启动方法 方法1: Sql代码 cd $ORACLE_HOME/bin #进入到oracle的安装目录 ./dbstart #重启服务器 ./lsnrctl start #重启监听器 ----------------------------------- 方法2: (1) 以oracle身份登录数据库&am…...

AssetBundleBrowser导入报错解决方案
第一次导入AssetBundleBrowser遇到报错有 Assets\Scenes\AssetBundles-Browser-master\AssetBundles-Browser-master\Tests\Editor\ABModelTests.cs(13,7): error CS0246: The type or namespace name Boo could not be found (are you missing a using directive or an assem…...

vue-baidu-map-3x 使用记录
在 Vue3 TypeScript 项目中,为了采用 标签组件 的方式,使用百度地图组件,冲浪发现了一个开源库 ovo,很方便!喜欢的朋友记得帮 原作者 点下 star ~ vue-baidu-map-3xbaidu-map的vue3/vue2版本(支持v2.0、v…...

SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...