机器学习和深度学习简述
一、人工智能、机器学习、深度学习的关系
近些年人工智能、机器学习和深度学习的概念十分火热,但很多从业者却很难说清它们之间的关系,外行人更是雾里看花。概括来说,人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的,三者的关系如 图1 所示,即:人工智能 > 机器学习 > 深度学习。
图1:人工智能、机器学习和深度学习三者关系示意
人工智能(ArtificialIntelligence,AI)是最宽泛的概念,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。由于这个定义只阐述了目标,而没有限定方法,因此实现人工智能存在的诸多方法和分支,导致其变成一个“大杂烩”式的学科。机器学习(MachineLearning,ML)是当前比较有效的一种实现人工智能的方式。深度学习(DeepLearning,DL)是机器学习算法中最热门的一个分支,近些年取得了显著的进展,并替代了大多数传统机器学习算法。
二、机器学习
区别于人工智能,机器学习、尤其是监督学习则有更加明确的指代。机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。这句话有点“云山雾罩”的感觉,让人不知所云,下面我们从机器学习的实现和方法论两个维度进行剖析。
2.1 机器学习的实现
机器学习的实现可以分成两步:训练和预测,类似于归纳和演绎:
归纳: 从具体案例中抽象一般规律,机器学习中的“训练”亦是如此。从一定数量的样本(已知模型输入X和模型输出Y)中,学习输出Y与输入
X的关系(可以想象成是某种表达式)。
演绎: 从一般规律推导出具体案例的结果,机器学习中的“预测”亦是如此。基于训练得到的Y与X之间的关系,如出现新的输入X,计算出输出
Y。通常情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。
2.2 机器学习的方法论
机器学习的方法论和人类科研的过程有着异曲同工之妙,下面以“机器从牛顿第二定律实验中学习知识”为例,帮助读者更加深入理解机器学习(监督学习)的方法论本质,即在“机器思考”的过程中确定模型的三个关键要素:假设、评价、优化。
三、深度学习
机器学习算法理论在上个世纪90年代发展成熟,在许多领域都取得了成功,但平静的日子只延续到2010年左右。随着大数据的涌现和计算机算力提升,深度学习模型异军突起,极大改变了机器学习的应用格局。今天,多数机器学习任务都可以使用深度学习模型解决,尤其在语音、计算机视觉和自然语言处理等领域,深度学习模型的效果比传统机器学习算法有显著提升。
相比传统的机器学习算法,深度学习做出了哪些改进呢?其实两者在理论结构上是一致的,即:模型假设、评价函数和优化算法,其根本差别在于假设的复杂度。如 图6 第二个示例(图像识别)所示,对于美女照片,人脑可以接收到五颜六色的光学信号,能快速反应出这张图片是一位美女,而且是程序员喜欢的类型。但对计算机而言,只能接收到一个数字矩阵,对于美女这种高级的语义概念,从像素到高级语义概念中间要经历的信息变换的复杂性是难以想象的,如图所示。
图:深度学习的模型复杂度难以想象
这种变换已经无法用数学公式表达,因此研究者们借鉴了人脑神经元的结构,设计出神经网络的模型,如图所示。图(a)展示了神经网络基本单元-感知机的设计方案,其处理信息的方式与人脑中的单一神经元有很强的相似性;图(b)展示了几种经典的神经网络结构,类似于人脑中多种基于大量神经元连接而形成的不同职能的器官。
图:模拟人脑结构,针对各种任务设计不同的深度学习模型
3.1 神经网络的基本概念
人工神经网络包括多个神经网络层,如:卷积层、全连接层、LSTM等,每一层又包括很多神经元,超过三层的非线性神经网络都可以被称为深度神经网络。通俗的讲,深度学习的模型可以视为是输入到输出的映射函数,如图像到高级语义(美女)的映射,足够深的神经网络理论上可以拟合任何复杂的函数。因此神经网络非常适合学习样本数据的内在规律和表示层次,对文字、图像和语音任务有很好的适用性。这几个领域的任务是人工智能的基础模块,因此深度学习被称为实现人工智能的基础也就不足为奇。
神经网络基本结构如 图9 所示。
图:神经网络基本结构示意图
神经网络包括:
神经元: 神经网络中每个节点称为神经元,由两部分组成:
加权和:将所有输入加权求和。
非线性变换(激活函数):加权和的结果经过一个非线性函数变换,让神经元计算具备非线性的能力。
多层连接: 大量这样的节点按照不同的层次排布,形成多层的结构连接起来,即称为神经网络。
前向计算: 从输入计算输出的过程,顺序从网络前至后。
计算图: 以图形化的方式展现神经网络的计算逻辑又称为计算图,也可以将神经网络的计算图以公式的方式表达:
由此可见,神经网络并没有那么神秘,它的本质是一个含有很多参数的“大公式”。
3.2 深度学习的发展历程
神经网络思想的提出已经是70多年前的事情了,现今的神经网络和深度学习的设计理论是一步步趋于完善的。在这漫长的发展岁月中,一些取得关键突破的闪光时刻,值得深度学习爱好者们铭记,如 图10 所示。
图:深度学习发展历程
1940年代:首次提出神经元的结构,但权重是不可学的。
50-60年代:提出权重学习理论,神经元结构趋于完善,开启了神经网络的第一个黄金时代。
1969年:提出异或问题(人们惊讶的发现神经网络模型连简单的异或问题也无法解决,对其的期望从云端跌落到谷底),神经网络模型进入了被束之高阁的黑暗时代。
1986年:新提出的多层神经网络解决了异或问题,但随着90年代后理论更完备并且实践效果更好的SVM等机器学习模型的兴起,神经网络并未得到重视。
2010年左右:深度学习进入真正兴起时期。随着神经网络模型改进的技术在语音和计算机视觉任务上大放异彩,也逐渐被证明在更多的任务,如自然语言处理以及海量数据的任务上更加有效。至此,神经网络模型重新焕发生机,并有了一个更加响亮的名字:深度学习。
为何神经网络到2010年后才焕发生机呢?这与深度学习成功所依赖的先决条件:大数据涌现、硬件发展和算法优化有关。
大数据是神经网络发展的有效前提。神经网络和深度学习是非常强大的模型,需要足够量级的训练数据。时至今日,之所以很多传统机器学习算法和人工特征依然是足够有效的方案,原因在于很多场景下没有足够的标记数据来支撑深度学习。深度学习的能力特别像科学家阿基米德的豪言壮语:“给我一根足够长的杠杆,我能撬动地球!”。深度学习也可以发出类似的豪言:“给我足够多的数据,我能够学习任何复杂的关系”。但在现实中,足够长的杠杆与足够多的数据一样,往往只能是一种美好的愿景。直到近些年,各行业IT化程度提高,累积的数据量爆发式地增长,才使得应用深度学习模型成为可能。
依靠硬件的发展和算法的优化。现阶段,依靠更强大的计算机、GPU、autoencoder预训练和并行计算等技术,深度学习在模型训练上的困难已经被逐渐克服。其中,数据量和硬件是更主要的原因。没有前两者,科学家们想优化算法都无从进行。
3.3 深度学习的研究和应用蓬勃发展
早在1998年,一些科学家就已经使用神经网络模型识别手写数字图像了。但深度学习在计算机视觉应用上的兴起,还是在2012年ImageNet比赛上,使用AlexNet做图像分类。如果比较下1998年和2012年的模型,会发现两者在网络结构上非常类似,仅在细节上有所优化。在这十四年间,计算性能的大幅提升和数据量的爆发式增长,促使模型完成了从“简单的数字识别”到“复杂的图像分类”的跨越。
虽然历史悠久,但深度学习在今天依然在蓬勃发展,一方面基础研究快速发展,另一方面工业实践层出不穷。基于深度学习的顶级会议ICLR(International Conference on Learning Representations)统计,深度学习相关的论文数量呈逐年递增的状态,如 图11 所示。同时,不仅仅是深度学习会议,与数据和模型技术相关的会议ICML和KDD,专注视觉的CVPR和专注自然语言处理的EMNLP等国际会议的大量论文均涉及着深度学习技术。该领域和相关领域的研究方兴未艾,技术仍在不断创新突破中。
图:深度学习相关论文数量逐年攀升
另一方面,以深度学习为基础的人工智能技术,在升级改造众多的传统行业领域,存在极其广阔的应用场景。图 选自艾瑞咨询的研究报告,人工智能技术不仅可在众多行业中落地应用(广度),同时,在部分行业(如安防、遥感、互联网、金融、工业等)已经实现了市场化变现和高速增长(深度),为社会贡献了巨大的经济价值。
图:以深度学习为基础的AI技术在各行业广泛应用
如图所示,以计算机视觉的行业应用分布为例,根据IDC的数据统计和预测,随着人工智能向各个行业的渗透,当前较多运用人工智能的互联网行业的产值占比反而会逐渐变小。
图:以深度学习为基础的AI技术在各行业广泛应用
3.4 深度学习改变了AI应用的研发模式
3.4.1 实现了端到端的学习
深度学习改变了很多领域算法的实现模式。在深度学习兴起之前,很多领域建模的思路是投入大量精力做特征工程,将专家对某个领域的“人工理解”沉淀成特征表达,然后使用简单模型完成任务(如分类或回归)。而在数据充足的情况下,深度学习模型可以实现端到端的学习,即不需要专门做特征工程,将原始的特征输入模型中,模型可同时完成特征提取和分类任务,如图所示。
图:深度学习实现了端到端的学习
以计算机视觉任务为例,特征工程是诸多图像科学家基于人类对视觉理论的理解,设计出来的一系列提取特征的计算步骤,典型如SIFT特征。在2010年之前的计算机视觉领域,人们普遍使用SIFT一类特征+SVM一类的简单浅层模型完成建模任务。
说明:
SIFT特征由David Lowe在1999年提出,在2004年加以完善。SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。
3.4.2 实现了深度学习框架标准化
除了应用广泛的特点外,深度学习还推动人工智能进入工业大生产阶段,算法的通用性导致标准化、自动化和模块化的框架产生,如 图15 所示。
图:深度学习模型具有通用性特点
在此之前,不同流派的机器学习算法理论和实现均不同,导致每个算法均要独立实现,如随机森林和支撑向量机(SVM)。但在深度学习框架下,不同模型的算法结构有较大的通用性,如常用于计算机视觉的卷积神经网络模型(CNN)和常用于自然语言处理的长期短期记忆模型(LSTM),都可以分为组网模块、梯度下降的优化模块和预测模块等。这使得抽象出统一的框架成为了可能,并大大降低了编写建模代码的成本。一些相对通用的模块,如网络基础算子的实现、各种优化算法等都可以由框架实现。建模者只需要关注数据处理,配置组网的方式,以及用少量代码串起训练和预测的流程即可。
在深度学习框架出现之前,机器学习工程师处于“手工作坊”生产的时代。为了完成建模,工程师需要储备大量数学知识,并为特征工程工作积累大量行业知识。每个模型是极其个性化的,建模者如同手工业者一样,将自己的积累形成模型的“个性化签名”。而今,“深度学习工程师”进入了工业化大生产时代,只要掌握深度学习必要但少量的理论知识,掌握Python编程,即可在深度学习框架上实现非常有效的模型,甚至与该领域最领先的模型不相上下。建模领域的技术壁垒面临着颠覆,也是新入行者的机遇。
图:深度学习框架大大减低了AI建模难度
相关文章:

机器学习和深度学习简述
一、人工智能、机器学习、深度学习的关系 近些年人工智能、机器学习和深度学习的概念十分火热,但很多从业者却很难说清它们之间的关系,外行人更是雾里看花。概括来说,人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的,三…...

diffusion model2 扩散模型的文本信息融合、交叉注意力机制、lora
前言 在上一篇文章中,我们剖析了diffusion model的原理,而在这一篇文章中,我们探讨与扩散模型有关的其他话题,包括扩散模型的unet是如何在推理噪声的过程中,融入文本信息的考量?其原理为交叉注意力机制&am…...

数据结构——二叉树
本章代码仓库:堆、二叉树链式结构 文章目录 🍭1. 树🧁1.1 树的概念🧁1.2 树的结构 🍬2. 二叉树🍫2.1 二叉树的概念🍫2.2 特殊的二叉树🍫2.3 二叉树的性质🍫2.4 二叉树的存…...

架构训练营学习笔记:5-3接口高可用
序 架构决定系统质量上限,代码决定系统质量下限,本节课串一下常见应对措施的框架,细节不太多,侧重对于技术本质有深入了解。 接口高可用整体框架 雪崩效应:请求量超过系统处理能力后导致系统性能螺旋快速下降 链式…...

【笔记】湖仓一体架构演进与发展
https://www.bilibili.com/video/BV1oF411F7rQ/?spm_id_from333.788.recommend_more_video.0&vd_sourcefa36a95b3c3fa4f32dd400f8cabddeaf...

政务云建设与应用解决方案[42页PPT]
导读:原文《政务云建设与应用解决方案[42页PPT]》(获取来源见文尾),本文精选其中精华及架构部分,逻辑清晰、内容完整,为快速形成售前方案提供参考。 完整版领取方式 完整版领取方式: 如需获取完…...

20天突破英语四级高频词汇——第①天
20天突破英语四级高频词汇~第一天加油(ง •_•)ง💪 🐳博主:命运之光 🌈专栏:英语四级高频词汇速记 🌌博主的其他文章:点击进入博主的主页 目录 20天突破英语四级…...

【网络基础实战之路】基于MGRE多点协议的实战详解
系列文章传送门: 【网络基础实战之路】设计网络划分的实战详解 【网络基础实战之路】一文弄懂TCP的三次握手与四次断开 【网络基础实战之路】基于MGRE多点协议的实战详解 【网络基础实战之路】基于OSPF协议建立两个MGRE网络的实验详解 PS:本要求基于…...

K8s实战入门(三)
文章目录 3. 实战入门3.1 Namespace3.1.1 测试两个不同的名称空间之间的 Pod 是否连通性 3.2 Pod3.3 Label3.4 Deployment3.5 Service 3. 实战入门 本章节将介绍如何在kubernetes集群中部署一个nginx服务,并且能够对其进行访问。 3.1 Namespace Namespace是kuber…...

Linux-centos花生壳实现内网穿透
Linux-centos花生壳实现内网穿透 官网教程 1.安装花生壳 下载网址 点击复制就可以复制下载命令了 wget "https://dl.oray.com/hsk/linux/phddns_5.2.0_amd64.rpm" -O phddns_5.2.0_amd64.rpm# 下载完成之后会多一个rpm文件 [rootlocalhost HuaSheng]# ls phddns_…...
Jackson类层次结构中的一些应用(Inheritance with Jackson)
Have a look at working with class hierarchies in Jackson. 如何在Jackson中使用类层次结构。 Inclusion of Subtype Information There are two ways to add type information when serializing and deserializing data objects, namely global default typing and per-cl…...

Python求均值、方差、标准偏差SD、相对标准偏差RSD
均值 均值是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。用于反映现象总体的一般水平,或分布的集中趋势。 import numpy as npa [2, 4, 6, 8]print(np.mean(a)) # 均值 print(np.average(a, weights[1, 2, 1, 1])) # 带…...

SQL ASNI where from group order 顺序
SQL语句执行顺序: from–>where–>group by -->having — >select --> order 第一步:from语句,选择要操作的表。 第二步:where语句,在from后的表中设置筛选条件,筛选出符合条件的记录。 …...
springboot(39) : RestTemplate完全体
HTTP请求调用集成,支持GET,POST,JSON,Header调用,日志打印,请求耗时计算,设置中文编码 1.使用(注入RestTemplateService) Autowiredprivate RestTemplateService restTemplateService; 2.RestTemplate配置类 import org.springframework.context.annotation.Bean; import org.…...

python中计算2的32次方减1,python怎么算2的3次方
大家好,给大家分享一下怎么样用python编写2的n次方,n由键盘输入,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! ---恢复内容开始--- 1、内置函数:取绝对值函数abs() 2、内置函数:取最大值max()ÿ…...
阿里云SLB负载均衡ALB、CLB和NLB有什么区别?
阿里云负载均衡SLB分为传统型负载均衡CLB(原SLB)、应用型负载均衡ALB和网络型负载均衡NLB,三者有什么区别?CLB是之前的传统的SLB,基于物理机架构的4层负载均衡;ALB是应用型负载均衡,7层负载均衡…...

SynergyNet(头部姿态估计 Head Pose Estimation)复现 demo测试
目录 0 相关资料1 环境搭建2 安装 SynergyNet3 下载相关文件4 编译5 测试 0 相关资料 SynergyNet(github):https://github.com/choyingw/SynergyNet 1 环境搭建 我用的AutoDL平台搭建 选择镜像 PyTorch 1.9.0 Python 3.8(ubuntu18.04) Cu…...

mysql高级(尚硅谷-夏磊)
目录 内容介绍 Linux下MySQL的安装与使用 Mysql逻辑架构 Mysql存储引擎 Sql预热 索引简介 内容介绍 1、Linux下MySQL的安装与使用 2、逻辑架构 3、sql预热 Linux下MySQL的安装与使用 1、docker安装docker run -d \-p 3309:3306 \-v /atguigu/mysql/mysql8/conf:/etc/my…...

C++实用技术(二)std::function和bind绑定器
目录 简介std::functionstd::function对象包装器std::function做回调函数 std::bind绑定器bind绑定普通函数bind绑定成员函数 简介 C11新增了std::function和std::bind。用于函数的包装以及参数的绑定。可以替代一些函数指针,回调函数的场景。 std::function std…...

vue框架 element导航菜单el-submenu 简单使用方法--以侧边栏举例
1、目标 实现动态增删菜单栏的效果,所以要在数据库中建表 2 、建表 2.1、表样式 2.2、表数据 3、实体类 import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;import java.util.List;Data AllArgsConstructor NoArgsConstr…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...