当前位置: 首页 > news >正文

题解 | #C.idol!!# 2023牛客暑期多校6

C.idol!!

数学

题目大意

正整数 n n n 的双阶乘 n ! ! n!! n!! 表示不超过 n n n 且与 n n n 有相同奇偶性的所有正整数乘积
求对于给定 n n n ∏ i = 1 n i ! ! \prod\limits_{i=1}^n i!! i=1ni!! 的后缀 0 0 0 个数

解题思路

根据双阶乘的性质,可以得到: ( n − 1 ) ! ! × n ! ! = n ! (n-1)!!\times n!!=n! (n1)!!×n!!=n!
因此对于给定的 n n n ,原式可化为:
∏ i = 1 n i ! ! = { ∏ i = 1 n 2 ( 2 i ) ! , n 为偶数 ∏ i = 1 n + 1 2 ( 2 i − 1 ) ! , n 为奇数 \prod\limits_{i=1}^n i!!=\begin{cases} \prod\limits_{i=1}^\frac{n}{2} (2i)! &,n为偶数 \\ \prod\limits_{i=1}^\frac{n+1}{2} (2i-1)! &,n为奇数 \end{cases} i=1ni!!= i=12n(2i)!i=12n+1(2i1)!,n为偶数,n为奇数
显而易见的,阶乘中因子 2 2 2 的个数一定多于因子 5 5 5 的个数,因此题目等价于求上式中因子 5 5 5 的个数//

考虑某单一阶乘 n ! n! n! 中所含因子 5 5 5 的个数。
可以发现,每个 5 5 5 的倍数项会提供 1 1 1 个因子 5 5 5 ,共有 ⌊ n 5 ⌋ \lfloor \dfrac{n}{5} \rfloor 5n
除此之外每个 25 = 5 2 25=5^2 25=52 的倍数项会额外提供一个因子 5 5 5 ,共有 ⌊ n 5 2 ⌋ \lfloor \dfrac{n}{5^2} \rfloor 52n
再除此之外每个 125 = 5 3 125=5^3 125=53 的倍数项会额外提供一个因子 5 5 5 ,共有 ⌊ n 5 3 ⌋ \lfloor \dfrac{n}{5^3} \rfloor 53n 项……
因此对于单一阶乘 n ! n! n! ,其提供因子 5 5 5 的数量 c n t 5 = ∑ i = 1 N ⌊ n 5 i ⌋ ( 5 N > n ) cnt_5=\sum\limits_{i=1}^N \lfloor \dfrac{n}{5^i} \rfloor (5^N>n) cnt5=i=1N5in(5N>n)

接着考虑连乘积中因子 5 5 5 个数的总和。
a n s = { ∑ i = 1 n 2 ∑ j = 1 N ⌊ 2 i 5 j ⌋ = ∑ i = 1 N ∑ j = 1 n 2 ⌊ 2 j 5 i ⌋ , n 为偶数 ∑ i = 1 n + 1 2 ∑ j = 1 N ⌊ 2 i − 1 5 j ⌋ = ∑ i = 1 N ∑ j = 1 n + 1 2 ⌊ 2 j − 1 5 i ⌋ , n 为奇数 ans=\begin{cases} \sum\limits_{i=1}^\frac{n}{2} \sum\limits_{j=1}^N \lfloor \dfrac{2i}{5^j} \rfloor=\sum\limits_{i=1}^N \sum\limits_{j=1}^\frac{n}{2} \lfloor \dfrac{2j}{5^i} \rfloor &,n为偶数 \\ \sum\limits_{i=1}^\frac{n+1}{2} \sum\limits_{j=1}^N \lfloor \dfrac{2i-1}{5^j} \rfloor=\sum\limits_{i=1}^N \sum\limits_{j=1}^\frac{n+1}{2} \lfloor \dfrac{2j-1}{5^i} \rfloor &,n为奇数 \end{cases} \\ ans= i=12nj=1N5j2i=i=1Nj=12n5i2ji=12n+1j=1N5j2i1=i=1Nj=12n+15i2j1,n为偶数,n为奇数

对于某一 i i i ,发现不论 n n n 的奇偶, j = 1 j=1 j=1 开始的每 5 i 5^i 5i 项之和构成公差为 2 × 5 i 2\times5^i 2×5i 的等差数列//
例: i = 1 i=1 i=1 n n n 为偶数且足够大时, ⌊ 2 j 5 i ⌋ \lfloor \dfrac{2j}{5^i} \rfloor 5i2j 的前 15 15 15 项如下,其中每 5 5 5 项之和构成公差为 5 × 2 5\times 2 5×2 的等差数列: 0 , 0 , 1 , 1 , 2 ∣ ∣ 2 , 2 , 3 , 3 , 4 ∣ ∣ 4 , 4 , 5 , 5 , 6 … … 0,0,1,1,2||2,2,3,3,4||4,4,5,5,6…… 0,0,1,1,2∣∣2,2,3,3,4∣∣4,4,5,5,6……

经计算,对于某一 i i i ,等差数列的首项为
a 1 = { ⌊ 5 i 2 ⌋ + 2 , n 为偶数 ⌊ 5 i 2 ⌋ + 1 , n 为奇数 a_1=\begin{cases} \lfloor \dfrac{5^i}{2} \rfloor+2 &,n为偶数 \\ \lfloor \dfrac{5^i}{2} \rfloor+1 &,n为奇数 \end{cases} a1= 25i+225i+1,n为偶数,n为奇数

完整的段用等差数列求和,非完整的段手算一下//

若此前完整段的数量记为 m m m ,则非完整段:
⌊ 5 i 2 ⌋ \lfloor \dfrac{5^i}{2} \rfloor 25i 项的值为 2 m 2m 2m
⌊ 5 i 2 ⌋ + 1 \lfloor \dfrac{5^i}{2} \rfloor+1 25i+1 至 $2\times\lfloor \dfrac{5^i}{2} \rfloor $ 项的值为 2 m + 1 2m+1 2m+1(手搓一下就知道了)

求和即可

N = ⌊ log ⁡ 5 n ⌋ + 1 N=\lfloor \log_5n \rfloor+1 N=log5n+1 ,对 i ∈ [ 1 , N ] i\in[1,N] i[1,N] 遍历求和得到答案

由于答案数据极其庞大,超出了C++ %lld(64bits)的范围,因此需要使用更高位数的整数类型(如int128)//或者直接转战Python

时间复杂度

O ( log ⁡ n ) O(\log n) O(logn)

参考代码

import math
# while 1:
n=int(input())
N=int(math.log(n,5)+1)
re=0
if n%2==0 :for i in range(1,N+1) :#print("i="+str(i))a1=(5**i)//2+2 #首项#print("a1="+str(a1))d=(5**i)*2 #公差#print("d="+str(d))m=(n//2)//(5**i) #完整段数#print("m="+str(m))re+=(2*a1+(m-1)*d)*m//2 #完整段等差数列求和#print("re1:" + str(re))re+=(n//2-m*(5**i))*2*m #最后一段余项求和#print("re2:" + str(re))#print("pl1=" + str((n//2-m*(5**i))*2*m))if n//2-m*(5**i)>(5**i)//2 :re+=n//2-m*(5**i)-(5**i)//2#print("pl2=" + str(n//2-m*(5**i)-(5**i)//2))if n%2 :for i in range(1,N+1) :#print("i="+str(i))a1=(5**i)//2+1 #首项#print("a1="+str(a1))d=(5**i)*2 #公差#print("d="+str(d))m=((n+1)//2)//(5**i) #完整段数#print("m="+str(m))re+=(2*a1+(m-1)*d)*m//2 #完整段等差数列求和#print("re1:" + str(re))re+=((n+1)//2-m*(5**i))*2*m #最后一段余项求和#print("re2:" + str(re)) #print("pl1=" + str(((n+1)//2-m*(5**i))*2*m))if (n+1)//2-m*(5**i)>(5**i)//2 :re+=(n+1)//2-m*(5**i)-(5**i)//2#print("pl2=" + str((n+1)//2-m*(5**i)-(5**i)//2))print(re)

相关文章:

题解 | #C.idol!!# 2023牛客暑期多校6

C.idol!! 数学 题目大意 正整数 n n n 的双阶乘 n ! ! n!! n!! 表示不超过 n n n 且与 n n n 有相同奇偶性的所有正整数乘积 求对于给定 n n n , ∏ i 1 n i ! ! \prod\limits_{i1}^n i!! i1∏n​i!! 的后缀 0 0 0 个数 解题思路 根据双阶乘的性质&…...

使用filebeat收集并解析springboot日志

序 本文主要研究一下如何使用filebeat收集并解析springboot日志 安装 在官网的下载页面filebeat/downloads提供了一些特定平台的安装包,不过对应linux最为省事的安装方式就是直接下载x86_64压缩包,然后解压即可 wget https://artifacts.elastic.co/d…...

P1993 小 K 的农场

小 K 的农场 题目描述 小 K 在 MC 里面建立很多很多的农场,总共 n n n 个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共 m m m 个),以下列三种形式描述:…...

Spring boot 集成 Skywalking 配置 || Skywalking 打不开【已解决】

一、Skywalking官网 Apache SkyWalking 1.下载Skywalking APM (如果下载最新的,双击打开闪退,选老点的版本) 2. 下载 Skywalking Agents 如果下载太慢,建议复制下载链接,然后用下载器下载,比…...

手把手教你使用 ftrace 对 Linux 系统进行 debug

1、简介 strace:用来跟踪 Linux 进程执行时的系统调用和接收所接收的信号,可以跟踪到一个进程产生的系统调用,包括参数,返回值,执行消耗的时间。 ftrace:是一个 Linux 内核函数跟踪器,function tracer,旨在帮助开发人员和系统设计者可以找到内核内部发生的事情,从 L…...

【练】要求定义一个全局变量 char buf[] = “1234567“,创建两个线程,不考虑退出条件,打印buf

要求定义一个全局变量 char buf[] "1234567",创建两个线程,不考虑退出条件,另: A线程循环打印buf字符串,B线程循环倒置buf字符串,即buf中本来存储1234567,倒置后buf中存储7654321. 不…...

iOS Viper架构(中文版)【看懂这篇就够了】

完整源码地址 一、iOS_Viper iOS的Viper架构,作为一个从业多年的iOS开发者,我个人认为应该要会一点viper 二、前言 viper的设计模式在iOS开发中不流行,甚至是Swift中,也没有用,我认为比较可惜。作为iOSer,当你掌握…...

深入理解缓存 TLB 原理

今天分享一篇TLB的好文章,希望大家夯实基本功,让我们一起深入理解计算机系统。 TLB 是 translation lookaside buffer 的简称。首先,我们知道 MMU 的作用是把虚拟地址转换成物理地址。 MMU工作原理 虚拟地址和物理地址的映射关系存储在页表…...

获取k8s scale资源对象的命令

kubectl get --raw /apis/<apiGroup>/<apiVersion>/namespaces/<namespaceName>/<resourceKind>/<resourceName>/scale 说明&#xff1a;scale资源对象用来水平扩展k8s资源对象的副本数&#xff0c;它是作为一种k8s资源对象的子资源存在&#xf…...

基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务

一、ChatYuan-large-v2 ChatYuan-large-v2是一个开源的支持中英双语的功能型对话语言大模型&#xff0c;与其他 LLM 不同的是模型十分轻量化&#xff0c;并且在轻量化的同时效果相对还不错&#xff0c;仅仅通过0.7B参数量就可以实现10B模型的基础效果&#xff0c;正是其如此的…...

SpringBoot集成Logback日志

SpringBoot集成Logback日志 文章目录 SpringBoot集成Logback日志一、什么是日志二、Logback简单介绍三、SpringBoot项目中使用Logback四、概念介绍一、日志记录器Logger1.1、日志记录器对象生成1.2、记录器的层级结构1.3、过滤器1.4、logger设置日志级别1.5、java代码演示1.6、…...

MATLAB(R2023a)添加工具箱TooLbox的方法-以GPOPS为例

一、找到工具箱存放位置 首先我们需要找到工具箱的存放位置&#xff0c;点击这个设置路径可以看到 我们的matlab工具箱的存放位置 C:\Program Files\MATLAB\R2023a\toolbox\matlab 从资源管理器中打开这个位置&#xff0c;可以看到里面各种工具箱 二、放入工具箱 解压我们…...

助力618-Y的混沌实践之路 | 京东云技术团队

一、写在前面 1、混沌是什么&#xff1f; 混沌工程&#xff08;Chaos Engineering&#xff09;的概念由 Netflix 在 2010 年提出&#xff0c;通过主动向系统中引入异常状态&#xff0c;并根据系统在各种压力下的行为表现确定优化策略&#xff0c;是保障系统稳定性的新型手段。…...

Python系统学习1-4-物理行、逻辑行、选择语句

一、行 (1) 物理行&#xff1a;程序员编写代码的行。 (2) 逻辑行&#xff1a;python解释器需要执行的指令。 (3) 建议&#xff1a; 一个逻辑行在一个物理行上。 如果一个物理行中使用多个逻辑行&#xff0c;需要使用分号&#xff1b;隔开。 (4) 换行&#xff1a; 如果…...

学习系统编程No.35【基于信号量的CP问题】

引言&#xff1a; 北京时间&#xff1a;2023/8/2/12:52&#xff0c;时间飞逝&#xff0c;恍惚间已经来到了八月&#xff0c;给我的第一感觉就是快开学了&#xff0c;别的感觉其实没有&#xff0c;哈哈&#xff01;看着身边的好友网络相关知识都要全部学完了&#xff0c;就好像…...

词嵌入、情感分类任务

目录 1.词嵌入&#xff08;word embedding&#xff09; 对单词使用one-hot编码的缺点是难以看出词与词之间的关系。 所以需要使用更加特征化的表示&#xff08;featurized representation&#xff09;&#xff0c;如下图所示&#xff0c;我们可以得到每个词的向量表达。 假设…...

TypeScript使用技巧

文章目录 使用技巧TypeScript内置的工具类型keyofextends 限定泛型interface 与 type 区别 TypeScript作为JavaScript的超集,通过提供静态类型系统和对ES6新特性的支持,使JavaScript开发变得更加高效和可维护。掌握TypeScript的使用技巧,可以帮助我们更好地开发和组织JavaScrip…...

MySQL — InnoDB事务

文章目录 事务定义事务特性事务隔离级别READ UNCOMMITTEDREPEATABLE READREAD COMMITTEDSERIALIZABLE 事务存在的问题脏读&#xff08;Dirty Read&#xff09;不可重复读&#xff08;Non-repeatable Read&#xff09;幻读&#xff08;Phantom Read&#xff09; 事务定义 数据库…...

LeetCode 42. 接雨水(动态规划 / 单调栈)

题目&#xff1a; 链接&#xff1a;LeetCode 42. 接雨水 难度&#xff1a;困难 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2…...

顺序表、链表刷题指南(力扣OJ)

目录 前言 题目一&#xff1a;删除有序数组中的重复项 思路&#xff1a; 题解&#xff1a; 题目二&#xff1a;合并两个有序数组 思路&#xff1a; 分析&#xff1a; 题解&#xff1a; 题目三&#xff1a;反转链表 思路&#xff1a; 分析&#xff1a; 题解&#xff1a; 题目四&…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...