当前位置: 首页 > news >正文

回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

1

2
3
4
5
6
5
6
7
8
9
10

基本介绍

MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测(完整源码和数据)
1.MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

程序设计

  • 完整源码和数据获取方式1:私信博主或同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测 目录 回归预测 | MATLAB实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现SO-CNN-BiGRU蛇群算法…...

步入React前厅 - 组件和JSX

目录 扩展学习资料 购物车应用 编写React元素 /src/index.js 创建组件 /src/components/listItem.jsx /src/App.js 理解JSX【JavaScriptXML】 JSX是什么 JSX规则 /src/components/listItem.jsx 使用Fragments /src/App.js 为何要使用Fragments 表格中使用Fragme…...

SpringBoot整合Sfl4j+logback的实践

一、概述 对于一个web项目来说&#xff0c;日志框架是必不可少的&#xff0c;日志的记录可以帮助我们在开发以及维护过程中快速的定位错误。slf4j,log4j,logback,JDK Logging等这些日志框架都是我们常见的日志框架&#xff0c;本文主要介绍这些常见的日志框架关系和SpringBoot…...

IT 基础架构自动化

什么是 IT 基础架构自动化 IT 基础架构自动化是通过使用技术来控制和管理构成 IT 基础架构的软件、硬件、存储和其他网络组件来减少人为干预的过程&#xff0c;目标是构建高效、可靠的 IT 环境。 为什么要自动化 IT 基础架构 为客户和员工提供无缝的数字体验已成为企业的当务…...

Docker入门——保姆级

Docker概述 ​ —— Notes from WAX through KuangShen 准确来说&#xff0c;这是一篇学习笔记&#xff01;&#xff01;&#xff01; Docker为什么出现 一款产品&#xff1a;开发—上线 两套环境&#xff01;应用环境如何铜鼓&#xff1f; 开发 – 运维。避免“在我的电脑…...

MONGODB ---- Austindatabases 历年文章合集

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;在新加的朋友会分到2群&#xff08;共…...

菠萝头 pinia和vuex对比 pinia比vuex更香 Pinia数据持久化及数据加密

前言 毕竟尤大佬都推荐使用pinia&#xff0c;支持vue2和vue3&#xff01; 如果熟悉vuex&#xff0c;花个把小时把pinia看一下&#xff0c;就不想用vuex了 支持选项式api和组合式api写法pinia没有mutations&#xff0c;只有&#xff1a;state、getters、actionspinia分模块不…...

机器学习笔记 - 关于GPT-4的一些问题清单

一、简述 据报道,GPT-4 的系统由八个模型组成,每个模型都有 2200 亿个参数。GPT-4 的参数总数估计约为 1.76 万亿个。 近年来,得益于 GPT-4 等高级语言模型的发展,自然语言处理(NLP) 取得了长足的进步。凭借其前所未有的规模和能力,GPT-4为语言 AI​​设立了新标准,并为机…...

sql 参数自动替换

需求&#xff1a;看日志时&#xff0c;有的sql 非常的长&#xff0c;参数比较多&#xff0c;无法直接在sql 客户端工具执行&#xff0c;如果一个一个的把问号占位符替换为参数太麻烦&#xff0c;因此写个html 小工具&#xff0c;批量替换&#xff1a; 代码&#xff1a; <!…...

Linux——设备树

目录 一、Linux 设备树的由来 二、Linux设备树的目的 1.平台识别 2.实时配置 3.设备植入 三、Linux 设备树的使用 1.基本数据格式 2.设备树实例解析 四、使用设备树的LED 驱动 五、习题 一、Linux 设备树的由来 在 Linux 内核源码的ARM 体系结构引入设备树之前&#x…...

网络:从socket编程的角度说明UDP和TCP的关系,http和tcp的区别

尝试从编程的角度解释各种网络协议。 UDP和TCP的关系 从Python的socket编程角度出发&#xff0c;UDP&#xff08;User Datagram Protocol&#xff09;和TCP&#xff08;Transmission Control Protocol&#xff09;是两种不同的传输协议。 TCP是一种面向连接的协议&#xff0c…...

大数据技术之Hadoop:HDFS集群安装篇(三)

目录 分布式文件系统HDFS安装篇 一、为什么海量数据需要分布式存储 二、 分布式的基础架构分析 三、 HDFS的基础架构 四 HDFS集群环境部署 4.1 下载安装包 4.2 集群规划 4.3 上传解压 4.4 配置HDFS集群 4.5 准备数据目录 4.6 分发hadoop到其他服务器 4.7 配置环境变…...

移动开发最佳实践:为 Android 和 iOS 构建成功应用的策略

您可以将本文作为指南&#xff0c;确保您的应用程序符合可行的最重要标准。请注意&#xff0c;这份清单远非详尽无遗&#xff1b;您可以加以利用&#xff0c;并添加一些自己的见解。 了解您的目标受众 要制作一个成功的应用程序&#xff0c;你需要了解你是为谁制作的。从创建…...

2023年第二届网络安全国际会议(CSW 2023)

会议简介 Brief Introduction 2023年第二届网络安全国际会议(CSW 2023) 会议时间&#xff1a;2023年10月13日-15日 召开地点&#xff1a;中国杭州 大会官网&#xff1a;www.cybersecurityworkshop.org 2023年第二届网络安全国际会议(CSW 2023)由杭州电子科技大学&#xff0c;国…...

【100天精通python】Day23:正则表达式,基本语法与re模块详解示例

目录 专栏导读 1 正则表达式概述 2 正则表达式语法 2.1 正则表达式语法元素 2.2 正则表达式的分组操作 3 re 模块详解与示例 4 正则表达式修饰符 专栏导读 专栏订阅地址&#xff1a;https://blog.csdn.net/qq_35831906/category_12375510.html 1 正则表达式概述 python 的…...

C++ 派生类成员的标识与访问——作用域分辨符

在派生类中&#xff0c;成员可以按访问属性分为以下四种&#xff1a; &#xff08;1&#xff09;不可访问成员。这是从基类私有成员继承下来的&#xff0c;派生类或是建立派生类对象的模块都无法访问到它们&#xff0c;如果从派生类继续派生新类&#xff0c;也是无法访问的。 &…...

SQL注入实操三(SQLilabs Less41-65)

文章目录 一、sqli-labs靶场1.轮子模式总结2.Less-41 stacked Query Intiger type blinda.注入点判断b.轮子测试c.获取数据库名称d.堆叠注入e.堆叠注入外带注入获取表名f.堆叠注入外带注入获取列名g.堆叠注入外带注入获取表内数据 3.Less-42 Stacked Query error baseda.注入点…...

(亲测解决)PyCharm 从目录下导包提示 unresolved reference(完整图解)

最近在进行一个Flask项目的过程中遇到了unresolved reference 包名的问题&#xff0c;在网上找了好久解决方案&#xff0c;并没有一个能让我一步到位解决问题的。 后来&#xff0c;我对该问题和网上的解决方案进行了分析&#xff0c;发现网上大多数都是针对项目同一目录下的py…...

【AI量化模型】跑通baseline

跑通baseline 任务学习内容特征工程模型训练与验证 bug未纠错的结果 任务 教程部署在百度 AI Studio&#xff0c;可以一键fork运行代码&#xff0c;选择*v100 32g1*的配置&#xff0c;baseline运行大约20分钟&#xff0c;再加上进阶部分大约40分钟 学习内容 特征工程 构建基…...

ElasticSearch:全文检索及倒排索引原理

1.从全文检索说起 首先介绍一下结构化与非结构化数据&#xff1a; 结构化数据将数据具有的特征事先以结构化的形式定义好&#xff0c;数据有固定的格式或有限的长度。典型的结构化数据就是传统关系型数据库的表结构&#xff0c;数据特征直接体现在表结构的字段上&#xff0c;…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…...

Linux-进程间的通信

1、IPC&#xff1a; Inter Process Communication&#xff08;进程间通信&#xff09;&#xff1a; 由于每个进程在操作系统中有独立的地址空间&#xff0c;它们不能像线程那样直接访问彼此的内存&#xff0c;所以必须通过某种方式进行通信。 常见的 IPC 方式包括&#…...

GAN模式奔溃的探讨论文综述(一)

简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析

目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork&#xff08;创建个人副本&#xff09;步骤 2: Clone&#xff08;克隆…...