当前位置: 首页 > news >正文

Pytorch深度学习-----神经网络之线性层用法

系列文章目录

PyTorch深度学习——Anaconda和PyTorch安装
Pytorch深度学习-----数据模块Dataset类
Pytorch深度学习------TensorBoard的使用
Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop)
Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10)
Pytorch深度学习-----DataLoader的用法
Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用
Pytorch深度学习-----神经网络的卷积操作
Pytorch深度学习-----神经网络之卷积层用法详解
Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用
Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)


文章目录

  • 系列文章目录
  • 一、线性层是什么?
    • 1.官网解释
    • 2.nn.Linear函数参数介绍
  • 二、实战演示
    • 1.将CIFAR10图片数据集进行线性变换


一、线性层是什么?

线性层是深度学习中常用的一种基本层类型。它也被称为全连接层或仿射层。线性层的作用是将输入数据与权重矩阵相乘,然后加上偏置向量,最后输出一个新的特征表示。

具体来说,线性层可以表示为 Y = XW + b,其中 X 是输入数据W 是权重矩阵b 是偏置向量Y 是输出结果。这个过程可以看作是对输入数据进行线性变换的操作。

1.官网解释

官网访问:LINEAR
如下图所示
在这里插入图片描述
在这里插入图片描述
由此可见,每一层的某个神经元的值都为前一层所有神经元的值的总和。

2.nn.Linear函数参数介绍

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

其中最重要的三个参数为in_features, out_features, bias

in_features, 表示输入的特征值大小,即输入的神经元个数
out_features,表示输出的特征值大小,即经过线性变换后输出的神经元个数
bias,表示是否添加偏置

二、实战演示

在这里插入图片描述
预定要的in_features为1,1,x形式
out_features为1,1,y的形式

1.将CIFAR10图片数据集进行线性变换

代码如下:

import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据
test_set = torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 加载数据集
dataloader = DataLoader(test_set,batch_size=64)# 查看输入的通道数
# for data in dataloader:
#     imgs, target = data
#     print(imgs.shape)  # torch.Size([64, 3, 32, 32])
#     # 将img进行reshape成1,1,x的形式
#     input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算x
#     print(input.shape) # torch.Size([1, 1, 1, 196608])# 搭建神经网络,设置预定的输出特征值为10
class Lgl(torch.nn.Module):def __init__(self):super(Lgl, self).__init__()self.linear1 = torch.nn.Linear(196608,10)  # 输入数据的特征值196608,输出特征值10def forward(self, input):output = self.linear1(input)return output
# 实例化
l = Lgl()
# 进行线性操作for data in dataloader:imgs, target = dataprint(imgs.shape)  # torch.Size([64, 3, 32, 32])# 将img进行reshape成1,1,x的形式input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算xoutput = l(input)print(output.shape) # torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
reshape后的图片shape:torch.Size([1, 1, 1, 196608])
经过线性后的图片shape:torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
reshape后的图片shape:torch.Size([1, 1, 1, 196608])
经过线性后的图片shape:torch.Size([1, 1, 1, 10])
……

除了使用reshape后,还可以使用torch.flatten()进行修改尺寸,将其自动修改为一维。
torch.flatten(input, start_dim=0, end_dim=- 1)
将输入tensor的第start_dim维到end_dim维之间的数据“拉平”成一维tensor

修改成flatten后代码如下

import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据
test_set = torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 加载数据集
dataloader = DataLoader(test_set,batch_size=64)# 查看输入的通道数
# for data in dataloader:
#     imgs, target = data
#     print(imgs.shape)  # torch.Size([64, 3, 32, 32])
#     # 将img进行reshape成1,1,x的形式
#     input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算x
#     print(input.shape) # torch.Size([1, 1, 1, 196608])# 搭建神经网络,设置预定的输出特征值为10
class Lgl(torch.nn.Module):def __init__(self):super(Lgl, self).__init__()self.linear1 = torch.nn.Linear(196608,10)  # 输入数据的特征值196608,输出特征值10def forward(self, input):output = self.linear1(input)return output
# 实例化
l = Lgl()
# 进行线性操作for data in dataloader:imgs, target = dataprint(f"原先的图片shape:{imgs.shape}")  # torch.Size([64, 3, 32, 32])# 将img进行reshape成1,1,x的形式input = torch.flatten(imgs) # 每次一张图,1通道,1*自动计算xprint(f"flatten后的图片shape:{input.shape}")output = l(input)print(f"经过线性后的图片shape:{output.shape}") # torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
flatten后的图片shape:torch.Size([196608])
经过线性后的图片shape:torch.Size([10])
原先的图片shape:torch.Size([64, 3, 32, 32])
flatten后的图片shape:torch.Size([196608])
经过线性后的图片shape:torch.Size([10])
……

相关文章:

Pytorch深度学习-----神经网络之线性层用法

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...

代码随想录算法训练营day58

文章目录 Day58 每日温度题目思路代码 下一个更大元素 I题目思路代码 Day58 每日温度 739. 每日温度 - 力扣(LeetCode) 题目 请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需…...

Grafana集成prometheus(4.Grafana添加预警)

上文已经完成了grafana对prometheus的集成及数据导入,本文主要记录grafana的预警功能(以内存为例) 添加预警 添加入口(2个) databorard面板点击edit,下方有个Alert的tab,创建Alert rules依赖…...

宏观上看Spring创建对象的过程

宏观上看Spring创建对象的过程 对于对象而言,可以分为简单对象和复杂对象; 简单对象 简单对象指可以直接new的对象; Spring在创建这些对象时,是基于反射来完成的。复杂对象 复杂对象指不能直接new的对象。 比如:要得到…...

Jtti:linux如何配置dns域名解析服务器

要配置Linux上的DNS域名解析服务器,您可以按照以下步骤进行操作: 1. 安装BIND软件包:BIND是Linux上最常用的DNS服务器软件,您可以使用以下命令安装它: sudo apt-get install bind9 2. 配置BIND:BIND的配置…...

上网速度慢解决方案

方法 1:手动设置 Proxy 服务器 假如你是使用宽带的用户,使用宽带路由器后可能会发觉无法浏览一些网页,其中一个原因是一些 ISP 商 在后台使用了隐形的代理服务器,使部分网页无法正常显示。假如你多次按“F5”键也无法刷新网页&…...

解决 “fatal: Could not read from remote repository.

问题描述: 在使用Git将本地仓库推送到远程仓库或将远程仓库克隆到本地的时候,发生了如下错误:“fatal: Could not read from remote repository.” 原因分析: 出现这错误一般是以下两种原因: 客户端与服务端未生成 …...

TypeScript知识点总结

typescript是js的超集,目前很多前端框架都开始使用它来作为项目的维护管理的工具,还在不断地更新,添加新功能中,我们学习它,才能更好的在的项目中运用它,发挥它的最大功效 let b: null nulllet c: null …...

Map简单介绍

Map 是 Java 中用于存储键值对的接口&#xff0c;它是一个抽象类&#xff0c;有多个实现类&#xff0c;如 HashMap、TreeMap、LinkedHashMap 等。我将为你提供一些关于 Map 接口的源码解读。 首先&#xff0c;Map 接口的定义如下&#xff1a; public interface Map<K, V&g…...

Linux文本处理工具和正则表达式

Linux文本处理工具和正则表达式 一.查看、截取和修改文本的工具 1.查看文本的工具 cat 最常用的文件查看命令&#xff1b;当不指明文件或者文件名为一杠’-时&#xff0c;读取标准输入。 cat [OPTION]... [FILE]... -A&#xff1a;显示所有控制符(tab键:^I;行结束符:$) -…...

【WebRTC---源码篇】(二十三)JitterBuffer

PacketBuffer packetbuffer类中重要的一些变量 // buffer_.size() and max_size_ must always be a power of two.const size_t max_size_;//能存储的最大元素个数// The fist sequence number currently in the buffer.uint16_t first_seq_num_ RTC_GUARDED_BY(crit_);//这个…...

基于SpringBoot+Vue的在线考试系统设计与实现(源码+LW+部署文档等)

博主介绍&#xff1a; 大家好&#xff0c;我是一名在Java圈混迹十余年的程序员&#xff0c;精通Java编程语言&#xff0c;同时也熟练掌握微信小程序、Python和Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我擅长在JavaWeb、SSH、SSM、SpringBoot等框架…...

用Rust实现23种设计模式之 外观模式

关注我&#xff0c;学习Rust不迷路&#xff01;&#xff01; 外观模式是一种结构型设计模式&#xff0c;它提供了一个统一的接口&#xff0c;用于访问子系统中的一组接口。以下是外观模式的优点和使用场景&#xff1a; 优点&#xff1a; 简化客户端代码&#xff1a;外观模式…...

使用一个python脚本抓取大量网站【1/3】

一、说明 您是否曾经想过抓取网站&#xff0c;但又不想为像Octoparse这样的抓取工具付费&#xff1f;或者&#xff0c;也许您只需要从网站上抓取几页&#xff0c;并且不想经历设置抓取脚本的麻烦。在这篇博文中&#xff0c;我将向您展示我如何创建一个工具&#xff0c;该工具能…...

Session与Cookie的区别(五)

储存状态的方式 小明的故事说完了&#xff0c;该来把上面这一段变成网络的实际案例了。其实在网络世界中问题也是一样的。 前面已经提到过我们会把状态存在 Cookie 里面&#xff0c;让 Request 之间能够变得有关联。 假设我们今天要来做一个会员系统&#xff0c;那我要怎么知道…...

【Linux】网络编程套接字

目录 1 预备知识 1.1 IP地址 1.2 端口号 1.3 TCP协议和UDP协议 1.4 网络字节序 2 socket 编程接口 2.0 socket 常见 API 2.1 socket 系统调用 2.2 bind 系统调用 2.3 recvfrom 系统调用 2.4 sendto 系统调用 2.5 listen 系统调用 2.6 accept 系统调用 2.7 con…...

【C++】语法小课堂 --- auto关键字 typeid查看实际类型 范围for循环 空指针nullptr

文章目录 &#x1f35f;一、auto关键字&#xff08;C11&#xff09;&#x1f369;1、auto的简介&#x1f369;2、auto的使用细则&#x1f6a9;auto与指针和引用结合起来使用&#x1f6a9; 在同一行定义多个变量 &#x1f369;3、auto不能推导的场景1️⃣auto不能作为函数的参数…...

Vercel 部署的项目发现APIkeys过期了怎么办

好不容易部署的Vercel&#xff0c;发现APIkeys过期了显示&#xff0c;查了查资料发现只要更新下新的apikeys&#xff0c;然后再重新部署下就好了。 重新设置APIkeys 1.1. 进去 Vercel 项目内部控制台&#xff0c;点击顶部的 Settings 按钮&#xff1b; 1.2 点击环境变量Enviorn…...

【HMS Core】推送报错907135701、分析数据查看

【关键字】 HMS、推送服务、分析服务 【问题描述1】 集成推送服务&#xff0c;获取Token时报错 907135701: scope list empty 【解决方案】 907135701OpenGW没有配置Scope 1、您可以检查下网络是否有问题&#xff0c;手机是否可以正常连接互联网 2、查看推送服务开关是否正…...

Air32 | 合宙Air001单片机内部FLASH读写示例

Air32 | 合宙Air001单片机内部FLASH读写示例 代码已经通过测试&#xff0c;开发环境KEIL-MDK 5.36。 测试代码 void FLASH_RdWrTest(void) {uint32_t Address;uint32_t PageReadBuffer[FLASH_PAGE_SIZE >> 2];uint32_t PageWriteBuffer[FLASH_PAGE_SIZE >> 2];mem…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...