Pytorch深度学习-----神经网络之线性层用法
系列文章目录
PyTorch深度学习——Anaconda和PyTorch安装
Pytorch深度学习-----数据模块Dataset类
Pytorch深度学习------TensorBoard的使用
Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop)
Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10)
Pytorch深度学习-----DataLoader的用法
Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用
Pytorch深度学习-----神经网络的卷积操作
Pytorch深度学习-----神经网络之卷积层用法详解
Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用
Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)
文章目录
- 系列文章目录
- 一、线性层是什么?
- 1.官网解释
- 2.nn.Linear函数参数介绍
- 二、实战演示
- 1.将CIFAR10图片数据集进行线性变换
一、线性层是什么?
线性层是深度学习中常用的一种基本层类型。它也被称为全连接层或仿射层。线性层的作用是将输入数据与权重矩阵相乘,然后加上偏置向量,最后输出一个新的特征表示。
具体来说,线性层可以表示为 Y = XW + b,其中 X 是输入数据,W 是权重矩阵,b 是偏置向量,Y 是输出结果。这个过程可以看作是对输入数据进行线性变换的操作。
1.官网解释
官网访问:LINEAR
如下图所示


由此可见,每一层的某个神经元的值都为前一层所有神经元的值的总和。
2.nn.Linear函数参数介绍
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
其中最重要的三个参数为in_features, out_features, bias
in_features, 表示输入的特征值大小,即输入的神经元个数
out_features,表示输出的特征值大小,即经过线性变换后输出的神经元个数
bias,表示是否添加偏置
二、实战演示

预定要的in_features为1,1,x形式
out_features为1,1,y的形式
1.将CIFAR10图片数据集进行线性变换
代码如下:
import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据
test_set = torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 加载数据集
dataloader = DataLoader(test_set,batch_size=64)# 查看输入的通道数
# for data in dataloader:
# imgs, target = data
# print(imgs.shape) # torch.Size([64, 3, 32, 32])
# # 将img进行reshape成1,1,x的形式
# input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算x
# print(input.shape) # torch.Size([1, 1, 1, 196608])# 搭建神经网络,设置预定的输出特征值为10
class Lgl(torch.nn.Module):def __init__(self):super(Lgl, self).__init__()self.linear1 = torch.nn.Linear(196608,10) # 输入数据的特征值196608,输出特征值10def forward(self, input):output = self.linear1(input)return output
# 实例化
l = Lgl()
# 进行线性操作for data in dataloader:imgs, target = dataprint(imgs.shape) # torch.Size([64, 3, 32, 32])# 将img进行reshape成1,1,x的形式input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算xoutput = l(input)print(output.shape) # torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
reshape后的图片shape:torch.Size([1, 1, 1, 196608])
经过线性后的图片shape:torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
reshape后的图片shape:torch.Size([1, 1, 1, 196608])
经过线性后的图片shape:torch.Size([1, 1, 1, 10])
……
除了使用reshape后,还可以使用torch.flatten()进行修改尺寸,将其自动修改为一维。
torch.flatten(input, start_dim=0, end_dim=- 1)
将输入tensor的第start_dim维到end_dim维之间的数据“拉平”成一维tensor
修改成flatten后代码如下
import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据
test_set = torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 加载数据集
dataloader = DataLoader(test_set,batch_size=64)# 查看输入的通道数
# for data in dataloader:
# imgs, target = data
# print(imgs.shape) # torch.Size([64, 3, 32, 32])
# # 将img进行reshape成1,1,x的形式
# input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算x
# print(input.shape) # torch.Size([1, 1, 1, 196608])# 搭建神经网络,设置预定的输出特征值为10
class Lgl(torch.nn.Module):def __init__(self):super(Lgl, self).__init__()self.linear1 = torch.nn.Linear(196608,10) # 输入数据的特征值196608,输出特征值10def forward(self, input):output = self.linear1(input)return output
# 实例化
l = Lgl()
# 进行线性操作for data in dataloader:imgs, target = dataprint(f"原先的图片shape:{imgs.shape}") # torch.Size([64, 3, 32, 32])# 将img进行reshape成1,1,x的形式input = torch.flatten(imgs) # 每次一张图,1通道,1*自动计算xprint(f"flatten后的图片shape:{input.shape}")output = l(input)print(f"经过线性后的图片shape:{output.shape}") # torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
flatten后的图片shape:torch.Size([196608])
经过线性后的图片shape:torch.Size([10])
原先的图片shape:torch.Size([64, 3, 32, 32])
flatten后的图片shape:torch.Size([196608])
经过线性后的图片shape:torch.Size([10])
……
相关文章:
Pytorch深度学习-----神经网络之线性层用法
系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...
代码随想录算法训练营day58
文章目录 Day58 每日温度题目思路代码 下一个更大元素 I题目思路代码 Day58 每日温度 739. 每日温度 - 力扣(LeetCode) 题目 请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需…...
Grafana集成prometheus(4.Grafana添加预警)
上文已经完成了grafana对prometheus的集成及数据导入,本文主要记录grafana的预警功能(以内存为例) 添加预警 添加入口(2个) databorard面板点击edit,下方有个Alert的tab,创建Alert rules依赖…...
宏观上看Spring创建对象的过程
宏观上看Spring创建对象的过程 对于对象而言,可以分为简单对象和复杂对象; 简单对象 简单对象指可以直接new的对象; Spring在创建这些对象时,是基于反射来完成的。复杂对象 复杂对象指不能直接new的对象。 比如:要得到…...
Jtti:linux如何配置dns域名解析服务器
要配置Linux上的DNS域名解析服务器,您可以按照以下步骤进行操作: 1. 安装BIND软件包:BIND是Linux上最常用的DNS服务器软件,您可以使用以下命令安装它: sudo apt-get install bind9 2. 配置BIND:BIND的配置…...
上网速度慢解决方案
方法 1:手动设置 Proxy 服务器 假如你是使用宽带的用户,使用宽带路由器后可能会发觉无法浏览一些网页,其中一个原因是一些 ISP 商 在后台使用了隐形的代理服务器,使部分网页无法正常显示。假如你多次按“F5”键也无法刷新网页&…...
解决 “fatal: Could not read from remote repository.
问题描述: 在使用Git将本地仓库推送到远程仓库或将远程仓库克隆到本地的时候,发生了如下错误:“fatal: Could not read from remote repository.” 原因分析: 出现这错误一般是以下两种原因: 客户端与服务端未生成 …...
TypeScript知识点总结
typescript是js的超集,目前很多前端框架都开始使用它来作为项目的维护管理的工具,还在不断地更新,添加新功能中,我们学习它,才能更好的在的项目中运用它,发挥它的最大功效 let b: null nulllet c: null …...
Map简单介绍
Map 是 Java 中用于存储键值对的接口,它是一个抽象类,有多个实现类,如 HashMap、TreeMap、LinkedHashMap 等。我将为你提供一些关于 Map 接口的源码解读。 首先,Map 接口的定义如下: public interface Map<K, V&g…...
Linux文本处理工具和正则表达式
Linux文本处理工具和正则表达式 一.查看、截取和修改文本的工具 1.查看文本的工具 cat 最常用的文件查看命令;当不指明文件或者文件名为一杠’-时,读取标准输入。 cat [OPTION]... [FILE]... -A:显示所有控制符(tab键:^I;行结束符:$) -…...
【WebRTC---源码篇】(二十三)JitterBuffer
PacketBuffer packetbuffer类中重要的一些变量 // buffer_.size() and max_size_ must always be a power of two.const size_t max_size_;//能存储的最大元素个数// The fist sequence number currently in the buffer.uint16_t first_seq_num_ RTC_GUARDED_BY(crit_);//这个…...
基于SpringBoot+Vue的在线考试系统设计与实现(源码+LW+部署文档等)
博主介绍: 大家好,我是一名在Java圈混迹十余年的程序员,精通Java编程语言,同时也熟练掌握微信小程序、Python和Android等技术,能够为大家提供全方位的技术支持和交流。 我擅长在JavaWeb、SSH、SSM、SpringBoot等框架…...
用Rust实现23种设计模式之 外观模式
关注我,学习Rust不迷路!! 外观模式是一种结构型设计模式,它提供了一个统一的接口,用于访问子系统中的一组接口。以下是外观模式的优点和使用场景: 优点: 简化客户端代码:外观模式…...
使用一个python脚本抓取大量网站【1/3】
一、说明 您是否曾经想过抓取网站,但又不想为像Octoparse这样的抓取工具付费?或者,也许您只需要从网站上抓取几页,并且不想经历设置抓取脚本的麻烦。在这篇博文中,我将向您展示我如何创建一个工具,该工具能…...
Session与Cookie的区别(五)
储存状态的方式 小明的故事说完了,该来把上面这一段变成网络的实际案例了。其实在网络世界中问题也是一样的。 前面已经提到过我们会把状态存在 Cookie 里面,让 Request 之间能够变得有关联。 假设我们今天要来做一个会员系统,那我要怎么知道…...
【Linux】网络编程套接字
目录 1 预备知识 1.1 IP地址 1.2 端口号 1.3 TCP协议和UDP协议 1.4 网络字节序 2 socket 编程接口 2.0 socket 常见 API 2.1 socket 系统调用 2.2 bind 系统调用 2.3 recvfrom 系统调用 2.4 sendto 系统调用 2.5 listen 系统调用 2.6 accept 系统调用 2.7 con…...
【C++】语法小课堂 --- auto关键字 typeid查看实际类型 范围for循环 空指针nullptr
文章目录 🍟一、auto关键字(C11)🍩1、auto的简介🍩2、auto的使用细则🚩auto与指针和引用结合起来使用🚩 在同一行定义多个变量 🍩3、auto不能推导的场景1️⃣auto不能作为函数的参数…...
Vercel 部署的项目发现APIkeys过期了怎么办
好不容易部署的Vercel,发现APIkeys过期了显示,查了查资料发现只要更新下新的apikeys,然后再重新部署下就好了。 重新设置APIkeys 1.1. 进去 Vercel 项目内部控制台,点击顶部的 Settings 按钮; 1.2 点击环境变量Enviorn…...
【HMS Core】推送报错907135701、分析数据查看
【关键字】 HMS、推送服务、分析服务 【问题描述1】 集成推送服务,获取Token时报错 907135701: scope list empty 【解决方案】 907135701OpenGW没有配置Scope 1、您可以检查下网络是否有问题,手机是否可以正常连接互联网 2、查看推送服务开关是否正…...
Air32 | 合宙Air001单片机内部FLASH读写示例
Air32 | 合宙Air001单片机内部FLASH读写示例 代码已经通过测试,开发环境KEIL-MDK 5.36。 测试代码 void FLASH_RdWrTest(void) {uint32_t Address;uint32_t PageReadBuffer[FLASH_PAGE_SIZE >> 2];uint32_t PageWriteBuffer[FLASH_PAGE_SIZE >> 2];mem…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
