Pytorch深度学习-----神经网络之线性层用法
系列文章目录
PyTorch深度学习——Anaconda和PyTorch安装
Pytorch深度学习-----数据模块Dataset类
Pytorch深度学习------TensorBoard的使用
Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop)
Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10)
Pytorch深度学习-----DataLoader的用法
Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用
Pytorch深度学习-----神经网络的卷积操作
Pytorch深度学习-----神经网络之卷积层用法详解
Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用
Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)
文章目录
- 系列文章目录
- 一、线性层是什么?
- 1.官网解释
- 2.nn.Linear函数参数介绍
- 二、实战演示
- 1.将CIFAR10图片数据集进行线性变换
一、线性层是什么?
线性层是深度学习中常用的一种基本层类型。它也被称为全连接层或仿射层。线性层的作用是将输入数据与权重矩阵相乘,然后加上偏置向量,最后输出一个新的特征表示。
具体来说,线性层可以表示为 Y = XW + b,其中 X 是输入数据,W 是权重矩阵,b 是偏置向量,Y 是输出结果。这个过程可以看作是对输入数据进行线性变换的操作。
1.官网解释
官网访问:LINEAR
如下图所示


由此可见,每一层的某个神经元的值都为前一层所有神经元的值的总和。
2.nn.Linear函数参数介绍
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
其中最重要的三个参数为in_features, out_features, bias
in_features, 表示输入的特征值大小,即输入的神经元个数
out_features,表示输出的特征值大小,即经过线性变换后输出的神经元个数
bias,表示是否添加偏置
二、实战演示

预定要的in_features为1,1,x形式
out_features为1,1,y的形式
1.将CIFAR10图片数据集进行线性变换
代码如下:
import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据
test_set = torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 加载数据集
dataloader = DataLoader(test_set,batch_size=64)# 查看输入的通道数
# for data in dataloader:
# imgs, target = data
# print(imgs.shape) # torch.Size([64, 3, 32, 32])
# # 将img进行reshape成1,1,x的形式
# input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算x
# print(input.shape) # torch.Size([1, 1, 1, 196608])# 搭建神经网络,设置预定的输出特征值为10
class Lgl(torch.nn.Module):def __init__(self):super(Lgl, self).__init__()self.linear1 = torch.nn.Linear(196608,10) # 输入数据的特征值196608,输出特征值10def forward(self, input):output = self.linear1(input)return output
# 实例化
l = Lgl()
# 进行线性操作for data in dataloader:imgs, target = dataprint(imgs.shape) # torch.Size([64, 3, 32, 32])# 将img进行reshape成1,1,x的形式input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算xoutput = l(input)print(output.shape) # torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
reshape后的图片shape:torch.Size([1, 1, 1, 196608])
经过线性后的图片shape:torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
reshape后的图片shape:torch.Size([1, 1, 1, 196608])
经过线性后的图片shape:torch.Size([1, 1, 1, 10])
……
除了使用reshape后,还可以使用torch.flatten()进行修改尺寸,将其自动修改为一维。
torch.flatten(input, start_dim=0, end_dim=- 1)
将输入tensor的第start_dim维到end_dim维之间的数据“拉平”成一维tensor
修改成flatten后代码如下
import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据
test_set = torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 加载数据集
dataloader = DataLoader(test_set,batch_size=64)# 查看输入的通道数
# for data in dataloader:
# imgs, target = data
# print(imgs.shape) # torch.Size([64, 3, 32, 32])
# # 将img进行reshape成1,1,x的形式
# input = torch.reshape(imgs,(1,1,1,-1)) # 每次一张图,1通道,1*自动计算x
# print(input.shape) # torch.Size([1, 1, 1, 196608])# 搭建神经网络,设置预定的输出特征值为10
class Lgl(torch.nn.Module):def __init__(self):super(Lgl, self).__init__()self.linear1 = torch.nn.Linear(196608,10) # 输入数据的特征值196608,输出特征值10def forward(self, input):output = self.linear1(input)return output
# 实例化
l = Lgl()
# 进行线性操作for data in dataloader:imgs, target = dataprint(f"原先的图片shape:{imgs.shape}") # torch.Size([64, 3, 32, 32])# 将img进行reshape成1,1,x的形式input = torch.flatten(imgs) # 每次一张图,1通道,1*自动计算xprint(f"flatten后的图片shape:{input.shape}")output = l(input)print(f"经过线性后的图片shape:{output.shape}") # torch.Size([1, 1, 1, 10])
原先的图片shape:torch.Size([64, 3, 32, 32])
flatten后的图片shape:torch.Size([196608])
经过线性后的图片shape:torch.Size([10])
原先的图片shape:torch.Size([64, 3, 32, 32])
flatten后的图片shape:torch.Size([196608])
经过线性后的图片shape:torch.Size([10])
……
相关文章:
Pytorch深度学习-----神经网络之线性层用法
系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…...
代码随想录算法训练营day58
文章目录 Day58 每日温度题目思路代码 下一个更大元素 I题目思路代码 Day58 每日温度 739. 每日温度 - 力扣(LeetCode) 题目 请根据每日 气温 列表,重新生成一个列表。对应位置的输出为:要想观测到更高的气温,至少需…...
Grafana集成prometheus(4.Grafana添加预警)
上文已经完成了grafana对prometheus的集成及数据导入,本文主要记录grafana的预警功能(以内存为例) 添加预警 添加入口(2个) databorard面板点击edit,下方有个Alert的tab,创建Alert rules依赖…...
宏观上看Spring创建对象的过程
宏观上看Spring创建对象的过程 对于对象而言,可以分为简单对象和复杂对象; 简单对象 简单对象指可以直接new的对象; Spring在创建这些对象时,是基于反射来完成的。复杂对象 复杂对象指不能直接new的对象。 比如:要得到…...
Jtti:linux如何配置dns域名解析服务器
要配置Linux上的DNS域名解析服务器,您可以按照以下步骤进行操作: 1. 安装BIND软件包:BIND是Linux上最常用的DNS服务器软件,您可以使用以下命令安装它: sudo apt-get install bind9 2. 配置BIND:BIND的配置…...
上网速度慢解决方案
方法 1:手动设置 Proxy 服务器 假如你是使用宽带的用户,使用宽带路由器后可能会发觉无法浏览一些网页,其中一个原因是一些 ISP 商 在后台使用了隐形的代理服务器,使部分网页无法正常显示。假如你多次按“F5”键也无法刷新网页&…...
解决 “fatal: Could not read from remote repository.
问题描述: 在使用Git将本地仓库推送到远程仓库或将远程仓库克隆到本地的时候,发生了如下错误:“fatal: Could not read from remote repository.” 原因分析: 出现这错误一般是以下两种原因: 客户端与服务端未生成 …...
TypeScript知识点总结
typescript是js的超集,目前很多前端框架都开始使用它来作为项目的维护管理的工具,还在不断地更新,添加新功能中,我们学习它,才能更好的在的项目中运用它,发挥它的最大功效 let b: null nulllet c: null …...
Map简单介绍
Map 是 Java 中用于存储键值对的接口,它是一个抽象类,有多个实现类,如 HashMap、TreeMap、LinkedHashMap 等。我将为你提供一些关于 Map 接口的源码解读。 首先,Map 接口的定义如下: public interface Map<K, V&g…...
Linux文本处理工具和正则表达式
Linux文本处理工具和正则表达式 一.查看、截取和修改文本的工具 1.查看文本的工具 cat 最常用的文件查看命令;当不指明文件或者文件名为一杠’-时,读取标准输入。 cat [OPTION]... [FILE]... -A:显示所有控制符(tab键:^I;行结束符:$) -…...
【WebRTC---源码篇】(二十三)JitterBuffer
PacketBuffer packetbuffer类中重要的一些变量 // buffer_.size() and max_size_ must always be a power of two.const size_t max_size_;//能存储的最大元素个数// The fist sequence number currently in the buffer.uint16_t first_seq_num_ RTC_GUARDED_BY(crit_);//这个…...
基于SpringBoot+Vue的在线考试系统设计与实现(源码+LW+部署文档等)
博主介绍: 大家好,我是一名在Java圈混迹十余年的程序员,精通Java编程语言,同时也熟练掌握微信小程序、Python和Android等技术,能够为大家提供全方位的技术支持和交流。 我擅长在JavaWeb、SSH、SSM、SpringBoot等框架…...
用Rust实现23种设计模式之 外观模式
关注我,学习Rust不迷路!! 外观模式是一种结构型设计模式,它提供了一个统一的接口,用于访问子系统中的一组接口。以下是外观模式的优点和使用场景: 优点: 简化客户端代码:外观模式…...
使用一个python脚本抓取大量网站【1/3】
一、说明 您是否曾经想过抓取网站,但又不想为像Octoparse这样的抓取工具付费?或者,也许您只需要从网站上抓取几页,并且不想经历设置抓取脚本的麻烦。在这篇博文中,我将向您展示我如何创建一个工具,该工具能…...
Session与Cookie的区别(五)
储存状态的方式 小明的故事说完了,该来把上面这一段变成网络的实际案例了。其实在网络世界中问题也是一样的。 前面已经提到过我们会把状态存在 Cookie 里面,让 Request 之间能够变得有关联。 假设我们今天要来做一个会员系统,那我要怎么知道…...
【Linux】网络编程套接字
目录 1 预备知识 1.1 IP地址 1.2 端口号 1.3 TCP协议和UDP协议 1.4 网络字节序 2 socket 编程接口 2.0 socket 常见 API 2.1 socket 系统调用 2.2 bind 系统调用 2.3 recvfrom 系统调用 2.4 sendto 系统调用 2.5 listen 系统调用 2.6 accept 系统调用 2.7 con…...
【C++】语法小课堂 --- auto关键字 typeid查看实际类型 范围for循环 空指针nullptr
文章目录 🍟一、auto关键字(C11)🍩1、auto的简介🍩2、auto的使用细则🚩auto与指针和引用结合起来使用🚩 在同一行定义多个变量 🍩3、auto不能推导的场景1️⃣auto不能作为函数的参数…...
Vercel 部署的项目发现APIkeys过期了怎么办
好不容易部署的Vercel,发现APIkeys过期了显示,查了查资料发现只要更新下新的apikeys,然后再重新部署下就好了。 重新设置APIkeys 1.1. 进去 Vercel 项目内部控制台,点击顶部的 Settings 按钮; 1.2 点击环境变量Enviorn…...
【HMS Core】推送报错907135701、分析数据查看
【关键字】 HMS、推送服务、分析服务 【问题描述1】 集成推送服务,获取Token时报错 907135701: scope list empty 【解决方案】 907135701OpenGW没有配置Scope 1、您可以检查下网络是否有问题,手机是否可以正常连接互联网 2、查看推送服务开关是否正…...
Air32 | 合宙Air001单片机内部FLASH读写示例
Air32 | 合宙Air001单片机内部FLASH读写示例 代码已经通过测试,开发环境KEIL-MDK 5.36。 测试代码 void FLASH_RdWrTest(void) {uint32_t Address;uint32_t PageReadBuffer[FLASH_PAGE_SIZE >> 2];uint32_t PageWriteBuffer[FLASH_PAGE_SIZE >> 2];mem…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
MySQL体系架构解析(三):MySQL目录与启动配置全解析
MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录,这个目录下存放着许多可执行文件。与其他系统的可执行文件类似,这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中,用…...
