《网约车运营数据分析实战》学习笔记
这篇文章整理自 接地气的陈老师 x 和鲸社区 | 网约车运营分析 数据分析实战活动业务讲解会【接地气的陈老师】的讲解
活动介绍
假设你是某打车APP的商业数据分析师,为某大区提供日常数据报表。现在大区领导表示:希望你从日常数据监测中,发现问题和机会点,并做出建议。请你认真研究手头报表数据,给出报告。
什么?这介绍就没了?
没了!
真实的商业分析就是这样:日常工作 80% 是重复的,枯燥的日报、周报、月报,这些监控报表和临时取数。可是,业务部门,领导们又希望你能从简单的监控中发现问题,做出洞察。那么
- 如何在日常数据里看出门道?
- 怎么在没有标准答案的情况下,自己找到标准?
- 怎么基于数据说出一二三,又能让人信服?
这是对商业分析师的重大考验。
通过这个案例,可以让同学们体验到真实工作状态,从期初的迷茫,到逐步清晰,到顿悟,到能够驾驭数据,驱动业务,需要很多年历练。今天带大家迈出第一步。
>> 数据文件链接
首先,我们需要知道企业中的数据分析和学校里学习或者自己练习会的区别:
- 轻过程:企业中数据分析汇报对象是老板,他并不懂得复杂的技术细节,过于专业反而不利于上下级沟通
- 重复枯燥:刚入门的新手大部分处理的都是一些制作报表、临时取数的工作
- 重洞察:需要保持对数据的敏感度,在日常重复的报表中产生洞察
示例数据
| 星期 | 时段 | 城市 | 冒泡数 | 呼叫数 | 应答数 | 完单数 | 司机在线 |
| 周一 | 0 | A市 | 29618 | 12616 | 11388 | 11276 | 13700 |
| 周一 | 1 | A市 | 17822 | 7851 | 7025 | 6890 | 9217 |
数据解释:
- 冒泡:打车APP中,乘客选择起点、终点,APP提示可选车型&价格,为一次“冒泡”
- 呼叫:乘客看到冒泡信息后,点击“呼叫”按钮,为一次呼叫
- 应答:司机看到乘客呼叫后,接单,为“应答”
- 完单:司机完成订单,乘客付款为“完单”
- 司机在线:每个时段内司机在线人次
这张报表是一个真实环境下使用的报表,这样设计的原因有:
- 所有的网约车是分城市运营的,每个城市的运营部门都要监控自己城市的运营情况
- 若干个城市会组成一个大区,大区内客观的市场情况可能是差不多的,对于运营情况可以有横向对比
- 时间是和用车是有明显的关系的,比如说周中的早晚高峰,周末出游
熟悉了这张报表后,就引出了此次活动的题目:作为一个数据分析师,你从这张报表里你看到了什么?它说明了什么问题?要怎么解决这个问题?
数据分析师现实工作中就是这样,日常监控的通常就是一个简单的报表,像题目展示的这张一样,3个维度5个数据,你要在这些日常运营数据中发现问题。
下面有3点解题提示:
- 明确标准:到底什么算有问题?这个和做科研有着明显区别的。我们做科研的时候,比如统计或者建模,他们都有一些明确的标准的,比如各种检验值,比如准确度。但实际业务中,如果这个时间段有1万个单,那这1万单到底是多还是少?它能不能成为评价一个城市运转好不好的一个关键的指标?如果不能,我应该怎样定义评价的标准并且可以自圆其说。
- 网约车业务特点:比较理想的运营状态是司机和乘客达到一个动态平衡。如果司机太多没有那么多乘客,他接不到单子,那司机肯定会流失;如果乘客太多了,乘客打不到车,那么乘客会流失。
- 汇报技巧:领导们特别喜欢听数据,然而当你说的数字超过3个的时候,他就会觉得,这个数据太复杂了,听不懂。那么当你要跟领导做汇报的时候,应该怎么样讲?如果说只讲一个指标一个数字,那么应该讲什么数字?尽量从最重要最简单的地方开始,把一个数字给大家讲清楚了,引起大家兴趣,那大家就可能有有兴趣的可以往下多听一点。
更多数据分析动手实践活动欢迎访问>>和鲸社区活动页面
相关文章:
《网约车运营数据分析实战》学习笔记
这篇文章整理自 接地气的陈老师 x 和鲸社区 | 网约车运营分析 数据分析实战活动业务讲解会【接地气的陈老师】的讲解 活动介绍 假设你是某打车APP的商业数据分析师,为某大区提供日常数据报表。现在大区领导表示:希望你从日常数据监测中,发现…...
PostgreSQL常用函数
PostgreSQL常用函数 内置函数 PostgreSQL 内置函数也称为聚合函数,用于对字符串或数字数据执行处理。 下面是所有通用 PostgreSQL 内置函数的列表: COUNT 函数:用于计算数据库表中的行数。MAX 函数:用于查询某一特定列中最大值…...
决策树和随机森林对比
1.用accuracy来对比 # -*-coding:utf-8-*-""" accuracy来对比决策树和随机森林 """ from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_wine#(178, 13…...
CS 144 Lab Seven -- putting it all together
CS 144 Lab Seven -- putting it all together 引言测试lab7.ccUDPSocketNetworkInterfaceAdapterTCPSocketLab7main方法子线程 小结 对应课程视频: 【计算机网络】 斯坦福大学CS144课程 Lab Six 对应的PDF: Checkpoint 6: putting it all together 引言 本实验无需进行任何编…...
opencv基础-29 Otsu 处理(图像分割)
Otsu 处理 Otsu 处理是一种用于图像分割的方法,旨在自动找到一个阈值,将图像分成两个类别:前景和背景。这种方法最初由日本学者大津展之(Nobuyuki Otsu)在 1979 年提出 在 Otsu 处理中,我们通过最小化类别内…...
gcc-buildroot-9.3.0 和 gcc-arm-10.3 的区别
gcc-buildroot-9.3.0 和 gcc-arm-10.3 是两个不同的 GCC (GNU Compiler Collection) 版本,主要用于编译 C、C 和其他语言的程序。它们之间的区别主要体现在以下几个方面: 版本号:gcc-buildroot-9.3.0 对应的是 GCC 9.3.0 版本,而 …...
IDEA Run SpringBoot程序步骤原理
这个文章不是高深的原理文章,仅仅是接手一个外部提供的阉割版代码遇到过的一个坑,后来解决了,记录一下。 1、IDEA Run 一个SpringBoot一直失败,提示找不到类,但是maven install成功,并且java -jar能成功ru…...
海康威视摄像头配置RTSP协议访问、onvif协议接入、二次开发SDK接入
一、准备工作 (1)拿到摄像头之后,将摄像头电源线插好,再将网线插入到路由器上。 (2)将自己的笔记本电脑也连接到路由器网络,与摄像头出在同一个局域网。 二、配置摄像头 2.1 激活方式选择 第一次使用设备需要激活,在进行配置。 最简单,最方便的方式是选择浏览器激…...
Android中的Parcelable 接口
Android中的Parcelable 接口 在Android中,Parcelable接口是用于实现对象序列化和反序列化的一种机制。它允许我们将自定义的Java对象转换成一个可传输的二进制数据流,以便在不同组件之间传递数据。通常在Activity之间传递复杂的自定义对象时,…...
Docker-Compose编排与部署
目录 Docker Compose Compose的优点 编排和部署 Compose原理 Compose应用案例 安装docker-ce 阿里云镜像加速器 安装docker-compose docker-compose用法 Yaml简介 验证LNMP环境 Docker Compose Docker Compose 的前身是 Fig,它是一个定义及运行多个 Dock…...
Linux JDK 安装
文章目录 安装步骤1、卸载openJDK1.1 查看当前Linux系统是否安装java,卸载openjdk1.2 卸载系统中已经存在的openJDK 2、在/usr/local目录下创建java目录3、上传JDK到Linux系统4、解压jdk5、配置Jdk环境变量6、重新加载/etc/profile文件,让配置生效7、测试安装是否成…...
JS中常用的数组拷贝技巧
我们都知道,数组也是属于对象,在JS中对象的存储方式则是引用的方式。我们想要拷贝一个数组,就不能只是变量之前的赋值拷贝,这样他们将共享同一个引用,而数组又具有可变性,所以无法将原数组和拷贝的数组的数…...
SAP ABAP程序性能优化-养成良好的代码习惯
ABAP程序基本上都需要从数据库里面抓数,所以性能很重要,同时有一些基本的,和优秀的写法是我们必须要掌握的,不然就会造成程序性能很差。下面给予总结(这里包括有很基本的,也包括有比较少用到的)…...
SQL SERVER ip地址改别名
SQL server在使用链接服务器时必须使用别名,使用ip地址就会把192.188.0.2这种点也解析出来 解决方案: 1、物理机ip 192.168.0.66 虚拟机ip 192.168.0.115 2、在虚拟机上找到 C:\Windows\System32\drivers\etc 下的 (我选中的文件&a…...
数据结构-1
1.2 线性结构树状结构网状结构(表 数 图) 数据:数值型 非数值型 1.2.3数据类型和抽象数据类型 1.3抽象数据类型 概念小结: 线性表: 如果在独立函数实现的 .c 文件中需要包含 stdlib.h 头文件,而主函数也需要包含 st…...
Java自定义校验注解实现List、set集合字段唯一性校验
文章目录 一: 使用场景二: 定义FieldUniqueValid注解2.1 FieldUniqueValid2.2 注解说明2.3 Constraint 注解介绍2.4 FieldUniqueValid注解使用 三:自定义FieldUniqueValidator校验类3.1 实现ConstraintValidator3.2 重写initialize方法3.3 重…...
xiaoweirobot.chat
目录 1 xiaoweirobot.chat 1.1 DetailList 2 HttpData 2.1 doInBackground 2.2 onPostExecute xiaoweirobot.chatpackage com.shrimp.xiaoweirobot.chat; DetailList <...
【无公网IP】本地电脑搭建个人博客网站(并发布公网访问 )和web服务器
【无公网IP】本地电脑搭建个人博客网站(并发布公网访问 )和web服务器 文章目录 【无公网IP】本地电脑搭建个人博客网站(并发布公网访问 )和web服务器前言1. 安装套件软件2. 创建网页运行环境 指定网页输出的端口号3. 让WordPress在…...
SpringCloud(29):Nacos简介
1 什么是配置中心 1.1 什么是配置 应用程序在启动和运行的时候往往需要读取一些配置信息,配置基本上伴随着应用程序的整个生命周期,比如:数据库连接参数、启动参数等。 配置主要有以下几个特点: 配置是独立于程序的只读变量 …...
freeBSD - 笔记
1 介绍 FreeBSD: FreeBSD是由FreeBSD项目团队开发的,最早可以追溯到1993年。它专注于性能、稳定性和可靠性,并在服务器和高性能计算环境中广泛使用。FreeBSD有着强大的网络性能和高度优化的TCP/IP协议栈,因此在网络服务器领域表…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
