当前位置: 首页 > news >正文

.net core 依赖注入生命周期

在.NET Core中,依赖注入的生命周期用于控制注入的服务实例的生命周期。下面是.NET Core中常用的几种依赖注入生命周期:

  1. Singleton(单例):在整个应用程序生命周期内只创建一个实例。每次注入都返回同一个实例。示例代码:

    services.AddSingleton<IService, Service>();
    
  2. Scoped(作用域):在每个作用域内创建一个实例。通常是在每个请求或操作中创建一个实例。在同一个作用域内,每次注入都返回同一个实例。示例代码:

    services.AddScoped<IService, Service>();
    
  3. Transient(临时):每次注入都创建一个新的实例。没有共享实例,每次注入都会返回一个新的实例。示例代码:

    services.AddTransient<IService, Service>();
    
使用场景:
  • 如果服务是无状态的,并且在整个应用程序中共享使用,可以选择 Singleton 生命周期。例如,一些静态配置或连接对象。

  • 如果服务需要在每个请求或操作中保持一致性,可以选择 Scoped 生命周期。例如,一些数据库上下文或工作单元。

  • 如果服务是轻量级的且可被多次创建,可以选择 Transient 生命周期。例如,简单的计算逻辑或服务代理。

需要注意的是,生命周期的选择会影响应用程序的性能和内存使用。如果使用不当,可能会导致内存泄漏或性能问题。选择适当的生命周期非常重要,确保在不同的场景下使用适当的服务生命周期。

相关文章:

.net core 依赖注入生命周期

在.NET Core中&#xff0c;依赖注入的生命周期用于控制注入的服务实例的生命周期。下面是.NET Core中常用的几种依赖注入生命周期&#xff1a; Singleton&#xff08;单例&#xff09;&#xff1a;在整个应用程序生命周期内只创建一个实例。每次注入都返回同一个实例。示例代码…...

栈和队列的实现

Lei宝啊&#xff1a;个人主页&#xff08;也许有你想看的&#xff09; 愿所有美好不期而遇 前言 &#xff1a; 栈和队列的实现与链表的实现很相似&#xff0c;新瓶装旧酒&#xff0c;没什么新东西。 可以参考这篇文章&#xff1a; -------------------------无头单向不循环…...

java中的垃圾收集机制

推荐 1 1 垃圾回收 1.1 java的gc堆中的对象而言&#xff0c;什么时候对象会从待回收状态变为激活状态&#xff08;垃圾变成非垃圾对象&#xff09; 当然可以。首先&#xff0c;为了使用 try-with-resources&#xff0c;您需要一个实现了 AutoCloseable 或 Closeable 接口的…...

TCP网络服务器设计

最近设计了一个网络服务器程序&#xff0c;对于4C8G的机器配置&#xff0c;TPS可以达到5W。业务处理逻辑是简单的字符串处理。服务器接收请求后对下游进行类似广播的发送。在此分享一下设计方式&#xff0c;如果有改进思路欢迎大家交流分享。 程序运行在CentOS7.9操作系统上&a…...

4. C++构造函数和析构函数

一、对象的初始化和清理 C中的面向对象来源于生活&#xff0c;每个对象也都会有初始设置以及对象销毁前的清理数据的设置&#xff0c;对象的初始化和清理也是两个非常重要的安全问题 一个对象或者变量没有初始状态&#xff0c;对其使用后果是未知的使用完一个对象或变量&#x…...

【Spring Cloud 四】Ribbon负载均衡

Ribbon负载均衡 系列文章目录背景一、什么是Ribbon二、为什么要有Ribbon三、使用Ribbon进行负载均衡服务提供者A代码pom文件yml配置文件启动类controller 服务提供者Bpom文件yml配置文件启动类controller 服务消费者pom文件yml文件启动类controller 运行测试 四、Ribbon的负载均…...

“星闪”:60%能耗 6倍速度 1/30时延**

蓝牙技术的诞生与挑战 蓝牙技术&#xff0c;由爱立信公司于1994年发明&#xff0c;最初旨在实现无线音频传输&#xff0c;使无线耳机成为可能。这项技术成为过去20多年里最主流的近距离无线通讯技术&#xff0c;广泛应用于手机、耳机、手柄、键盘等设备。然而&#xff0c;尽管…...

cocosCreator 之 i18n多语言插件

版本&#xff1a; v3.4.0 环境&#xff1a; Mac 简介 i18n是国际化的简称&#xff0c; 全名&#xff1a;internationalization&#xff1b;取首尾字符i和n&#xff0c;18代表单词中间的字符数目。 该插件不需要产品做太多的改变&#xff0c;通过语言的设置&#xff0c;实现不…...

redis 如何保证数据一致性

前言 日常开发中常会使用redis作为项目中的缓存&#xff0c;只要我们使用 Redis 缓存&#xff0c;就必然会面对缓存和数据库间的一致性保证问题。而且如果数据不一致&#xff0c;那么应用从缓存中读取的数据就不是最新数据&#xff0c;可能会导致严重的业务问题。 为什么会数…...

因果推断(三)双重差分法(DID)

因果推断&#xff08;三&#xff09;双重差分法&#xff08;DID&#xff09; 双重差分法是很简单的群体效应估计方法&#xff0c;只需要将样本数据随机分成两组&#xff0c;对其中一组进行干预。在一定程度上减轻了选择偏差带来的影响。 因果效应计算&#xff1a;对照组y在干预…...

neo4j入门实例介绍

使用Cypher查询语言创建了一个图数据库&#xff0c;其中包含了电影《The Matrix》和演员Keanu Reeves、Carrie-Anne Moss、Laurence Fishburne、Hugo Weaving以及导演Lilly Wachowski和Lana Wachowski之间的关系。 CREATE (TheMatrix:Movie {title:The Matrix, released:1999,…...

CGAL-2D和3D线性几何内核-点和向量-内核扩展

文章目录 1.介绍1.1.鲁棒性 2.内核表示2.1.通过参数化实现泛型2.2.笛卡尔核2.3.同质核2.4.命名约定2.5.内核作为trait类2.6.选择内核和预定义内核 3.几何内核3.1.点与向量3.2.内核对象3.3.方位和相对位置 4.谓语和结构4.1.谓词4.2.结构4.3.交集和变量返回类型4.4.例子4.5.构造性…...

Ubuntu 22.04 安装docker

参考&#xff1a; https://docs.docker.com/engine/install/ubuntu/ 支持的Ubuntu版本&#xff1a; Ubuntu Lunar 23.04Ubuntu Kinetic 22.10Ubuntu Jammy 22.04 (LTS)Ubuntu Focal 20.04 (LTS) 1 卸载旧版本 非官方的安装包&#xff0c;需要先卸载&#xff1a; docker.io…...

电脑维护进阶:让你的“战友”更强大、更持久!

前言 无论是学习还是工作&#xff0c;电脑已经成为了IT人必不可少的得力助手。然而&#xff0c;电脑的性能和寿命需要经过细心的维护来保证。本文将详细探讨如何维护你的电脑&#xff0c;延长它的寿命&#xff0c;以及一些实用建议。 硬件保养篇 内部清洁 灰尘会导致电脑散热…...

【Leetcode】75.颜色分类

一、题目 1、题目描述 给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。 我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。 必须在不使用库内置的 sort 函数的情况下解决这个问…...

Pytesseract学习笔记

函数 pytesseract.image_to_string(image: Any, lang: Any None, …) 识别图像中的文本。 Parameters image(Any)&#xff1a;输入图像&#xff0c;不接受bytes类型。...

cnvd通用型证书获取姿势

因为技术有限&#xff0c;只能挖挖不用脑子的漏洞&#xff0c;平时工作摸鱼的时候通过谷歌引擎引擎搜索找找有没有大点的公司有sql注入漏洞&#xff0c;找的方法就很简单&#xff0c;网站结尾加上’&#xff0c;有异常就测试看看&#xff0c;没有马上下一家&#xff0c;效率至上…...

elasticsearch的副本和分片的区别

es/elasticsearch的副本和分片的区别 一&#xff1a;概念 &#xff08;1&#xff09;集群&#xff08;Cluster&#xff09;&#xff1a; ES可以作为一个独立的单个搜索服务器。不过&#xff0c;为了处理大型数据集&#xff0c;实现容错和高可用性&#xff0c;ES可以运行在许多互…...

Docker部署Gitlab

Docker部署Gitlab 文章目录 Docker部署Gitlab前置环境部署步骤初始化配置文件80端口部署方式&#xff08;二选一&#xff09;非80端口需要的部署方式&#xff08;二选一&#xff09;修改 gitlab.rb修改 gitlab.yml刷新配置 前置环境 docker 19.03.13 es 7.2.0 部署步骤 初始…...

ABeam News | ABeam大中华区新人入社式,开启崭新的职场探索之旅吧!

ABeam News | ABeam大中华区新人入社式&#xff0c;开启崭新的职场探索之旅吧&#xff01; 隔空投送 很高兴认识你 7月3日&#xff0c;FY24 ABeam大中华区新人入社式在西安隆重举办&#xff0c;ABeam大中华区董事长兼总经理中野洋辅先生专程莅临入社式现场&#xff0c;与89名…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

从0开始学习R语言--Day17--Cox回归

Cox回归 在用医疗数据作分析时&#xff0c;最常见的是去预测某类病的患者的死亡率或预测他们的结局。但是我们得到的病人数据&#xff0c;往往会有很多的协变量&#xff0c;即使我们通过计算来减少指标对结果的影响&#xff0c;我们的数据中依然会有很多的协变量&#xff0c;且…...