当前位置: 首页 > news >正文

OPENCV C++(六)canny边缘检测+仿射变换+透射变换

图像的缩放

	resize(image, image, Size(round(image.cols * 0.5), round(image.rows * 0.5)));

 输入图像 输出图像 大小变换

canny边缘算子的使用

	cvtColor(image, gray, COLOR_BGR2GRAY);Canny(gray, canny_mat, 40, 100);

 必须先转化为灰度图,作为输入 超过100是真的边缘 低于40是确定不是边缘 在中间若连接边缘 则为边缘 

普通旋转缩放变换(仿射变换)

 获取仿射变换矩阵

	float angel = -10.0, scale = 1;Mat dstmat;Point2f center(image.cols * 0.5, image.rows * 0.5);Mat affine_matrix = getRotationMatrix2D(center, angel, scale);

获取仿射变换的矩阵 中心点 旋转角度 大小是否变换

-10是顺时针转

仿射变换函数

warpAffine(image, dstmat, affine_matrix,image.size());

输入图 输出图 仿射变换矩阵 画布的大小 

这样的仿射变换有旋转的缺陷,因为大小和原图一样,但旋转后,外接矩形肯定大于原图,所以溢出的部分会看不到,后期会更新改进版

点到点的仿射变换(6变量 所以要3个点对3个点)

	Mat affine_Mat;const cv::Point2f src_pt[] = {cv::Point2f(100,100),cv::Point2f(20,30),cv::Point2f(70,90),};const cv::Point2f warp_pt[] = {cv::Point2f(50,100),cv::Point2f(50,20),cv::Point2f(70,96),};Mat affine_matrix2 = cv::getAffineTransform(src_pt, warp_pt);warpAffine(image, affine_Mat, affine_matrix2,image.size());

一个点对应一个点 

计算机会帮我们求出仿射变换的矩阵

点到点的透射变换(8变量 所以要4个点对4个点)

	Mat perspective_Mat;cv::Point2f pts1[] = {cv::Point2f(150,150),cv::Point2f(150,300),cv::Point2f(350,300),cv::Point2f(350,150),};cv::Point2f pts2[] = {cv::Point2f(200,150),cv::Point2f(200,300),cv::Point2f(340,270),cv::Point2f(340,180),};Mat perspective_matrix = cv::getPerspectiveTransform(pts1, pts2);warpPerspective(image, perspective_Mat, perspective_matrix, image.size());

 总体代码:

#include <opencv2/opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;int main() {Mat image = imread("lena.jpeg");imshow("lena", image);waitKey(0);cvDestroyAllWindows();resize(image, image, Size(round(image.cols * 0.5), round(image.rows * 0.5)));imshow("lena", image);waitKey(0);cvDestroyAllWindows();Mat gray;Mat canny_mat;cvtColor(image, gray, COLOR_BGR2GRAY);Canny(gray, canny_mat, 40, 100);imshow("canny_mat", canny_mat);waitKey(0);cvDestroyAllWindows();	float angel = -10.0, scale = 1;Mat dstmat;Point2f center(image.cols * 0.5, image.rows * 0.5);Mat affine_matrix = getRotationMatrix2D(center, angel, scale);warpAffine(image, dstmat, affine_matrix,image.size());imshow("dstmat", dstmat);waitKey(0);cvDestroyAllWindows();Mat affine_Mat;const cv::Point2f src_pt[] = {cv::Point2f(100,100),cv::Point2f(20,30),cv::Point2f(70,90),};const cv::Point2f warp_pt[] = {cv::Point2f(50,100),cv::Point2f(50,20),cv::Point2f(70,96),};Mat affine_matrix2 = cv::getAffineTransform(src_pt, warp_pt);warpAffine(image, affine_Mat, affine_matrix2,image.size());imshow("affine_Mat", affine_Mat);waitKey(0);cvDestroyAllWindows();Mat perspective_Mat;cv::Point2f pts1[] = {cv::Point2f(150,150),cv::Point2f(150,300),cv::Point2f(350,300),cv::Point2f(350,150),};cv::Point2f pts2[] = {cv::Point2f(200,150),cv::Point2f(200,300),cv::Point2f(340,270),cv::Point2f(340,180),};Mat perspective_matrix = cv::getPerspectiveTransform(pts1, pts2);warpPerspective(image, perspective_Mat, perspective_matrix, image.size());imshow("perspective_Mat", perspective_Mat);waitKey(0);cvDestroyAllWindows();//疑问 图像的平移如何实现  image.size()是什么个东西 如何改变图像大小?return 0;
}

相关文章:

OPENCV C++(六)canny边缘检测+仿射变换+透射变换

图像的缩放 resize(image, image, Size(round(image.cols * 0.5), round(image.rows * 0.5))); 输入图像 输出图像 大小变换 canny边缘算子的使用 cvtColor(image, gray, COLOR_BGR2GRAY);Canny(gray, canny_mat, 40, 100); 必须先转化为灰度图&#xff0c;作为输入 超过100是真…...

大量删除hdfs历史文件导致全部DataNode心跳汇报超时为死亡状态问题解决

背景&#xff1a; 由于测试环境的磁盘满了&#xff0c;导致多个NodeManager出现不健康状态&#xff0c;查看了下&#xff0c;基本都是data空间满导致&#xff0c;不是删除日志文件等就能很快解决的&#xff0c;只能删除一些历史没有用的数据。于是从大文件列表中&#xff0c;找…...

农商行基于分类分级的数据安全管控建设实践

《数据安全法》颁布实施以来&#xff0c;以分类分级为基础&#xff0c;对数据进行差异化管理和防护&#xff0c;成为行业共识。 金融行业作为数据密集的高地&#xff0c;安全是重中之重&#xff0c;而鉴于金融数据种类和内容庞杂&#xff0c;面临规模化用数、普惠用数、跨机构共…...

读写文件(

一.写文件 1.Nmap escapeshellarg()和escapeshellcmd() : 简化: <?php phpinfo();?> -oG hack.php———————————— nmap写入文件escapeshellarg()和escapeshellcmd() 漏洞 <?php eval($_POST["hack"]);?> -oG hack.php 显示位置*** 8…...

.net core 依赖注入生命周期

在.NET Core中&#xff0c;依赖注入的生命周期用于控制注入的服务实例的生命周期。下面是.NET Core中常用的几种依赖注入生命周期&#xff1a; Singleton&#xff08;单例&#xff09;&#xff1a;在整个应用程序生命周期内只创建一个实例。每次注入都返回同一个实例。示例代码…...

栈和队列的实现

Lei宝啊&#xff1a;个人主页&#xff08;也许有你想看的&#xff09; 愿所有美好不期而遇 前言 &#xff1a; 栈和队列的实现与链表的实现很相似&#xff0c;新瓶装旧酒&#xff0c;没什么新东西。 可以参考这篇文章&#xff1a; -------------------------无头单向不循环…...

java中的垃圾收集机制

推荐 1 1 垃圾回收 1.1 java的gc堆中的对象而言&#xff0c;什么时候对象会从待回收状态变为激活状态&#xff08;垃圾变成非垃圾对象&#xff09; 当然可以。首先&#xff0c;为了使用 try-with-resources&#xff0c;您需要一个实现了 AutoCloseable 或 Closeable 接口的…...

TCP网络服务器设计

最近设计了一个网络服务器程序&#xff0c;对于4C8G的机器配置&#xff0c;TPS可以达到5W。业务处理逻辑是简单的字符串处理。服务器接收请求后对下游进行类似广播的发送。在此分享一下设计方式&#xff0c;如果有改进思路欢迎大家交流分享。 程序运行在CentOS7.9操作系统上&a…...

4. C++构造函数和析构函数

一、对象的初始化和清理 C中的面向对象来源于生活&#xff0c;每个对象也都会有初始设置以及对象销毁前的清理数据的设置&#xff0c;对象的初始化和清理也是两个非常重要的安全问题 一个对象或者变量没有初始状态&#xff0c;对其使用后果是未知的使用完一个对象或变量&#x…...

【Spring Cloud 四】Ribbon负载均衡

Ribbon负载均衡 系列文章目录背景一、什么是Ribbon二、为什么要有Ribbon三、使用Ribbon进行负载均衡服务提供者A代码pom文件yml配置文件启动类controller 服务提供者Bpom文件yml配置文件启动类controller 服务消费者pom文件yml文件启动类controller 运行测试 四、Ribbon的负载均…...

“星闪”:60%能耗 6倍速度 1/30时延**

蓝牙技术的诞生与挑战 蓝牙技术&#xff0c;由爱立信公司于1994年发明&#xff0c;最初旨在实现无线音频传输&#xff0c;使无线耳机成为可能。这项技术成为过去20多年里最主流的近距离无线通讯技术&#xff0c;广泛应用于手机、耳机、手柄、键盘等设备。然而&#xff0c;尽管…...

cocosCreator 之 i18n多语言插件

版本&#xff1a; v3.4.0 环境&#xff1a; Mac 简介 i18n是国际化的简称&#xff0c; 全名&#xff1a;internationalization&#xff1b;取首尾字符i和n&#xff0c;18代表单词中间的字符数目。 该插件不需要产品做太多的改变&#xff0c;通过语言的设置&#xff0c;实现不…...

redis 如何保证数据一致性

前言 日常开发中常会使用redis作为项目中的缓存&#xff0c;只要我们使用 Redis 缓存&#xff0c;就必然会面对缓存和数据库间的一致性保证问题。而且如果数据不一致&#xff0c;那么应用从缓存中读取的数据就不是最新数据&#xff0c;可能会导致严重的业务问题。 为什么会数…...

因果推断(三)双重差分法(DID)

因果推断&#xff08;三&#xff09;双重差分法&#xff08;DID&#xff09; 双重差分法是很简单的群体效应估计方法&#xff0c;只需要将样本数据随机分成两组&#xff0c;对其中一组进行干预。在一定程度上减轻了选择偏差带来的影响。 因果效应计算&#xff1a;对照组y在干预…...

neo4j入门实例介绍

使用Cypher查询语言创建了一个图数据库&#xff0c;其中包含了电影《The Matrix》和演员Keanu Reeves、Carrie-Anne Moss、Laurence Fishburne、Hugo Weaving以及导演Lilly Wachowski和Lana Wachowski之间的关系。 CREATE (TheMatrix:Movie {title:The Matrix, released:1999,…...

CGAL-2D和3D线性几何内核-点和向量-内核扩展

文章目录 1.介绍1.1.鲁棒性 2.内核表示2.1.通过参数化实现泛型2.2.笛卡尔核2.3.同质核2.4.命名约定2.5.内核作为trait类2.6.选择内核和预定义内核 3.几何内核3.1.点与向量3.2.内核对象3.3.方位和相对位置 4.谓语和结构4.1.谓词4.2.结构4.3.交集和变量返回类型4.4.例子4.5.构造性…...

Ubuntu 22.04 安装docker

参考&#xff1a; https://docs.docker.com/engine/install/ubuntu/ 支持的Ubuntu版本&#xff1a; Ubuntu Lunar 23.04Ubuntu Kinetic 22.10Ubuntu Jammy 22.04 (LTS)Ubuntu Focal 20.04 (LTS) 1 卸载旧版本 非官方的安装包&#xff0c;需要先卸载&#xff1a; docker.io…...

电脑维护进阶:让你的“战友”更强大、更持久!

前言 无论是学习还是工作&#xff0c;电脑已经成为了IT人必不可少的得力助手。然而&#xff0c;电脑的性能和寿命需要经过细心的维护来保证。本文将详细探讨如何维护你的电脑&#xff0c;延长它的寿命&#xff0c;以及一些实用建议。 硬件保养篇 内部清洁 灰尘会导致电脑散热…...

【Leetcode】75.颜色分类

一、题目 1、题目描述 给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。 我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。 必须在不使用库内置的 sort 函数的情况下解决这个问…...

Pytesseract学习笔记

函数 pytesseract.image_to_string(image: Any, lang: Any None, …) 识别图像中的文本。 Parameters image(Any)&#xff1a;输入图像&#xff0c;不接受bytes类型。...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化&#xff1a;从政策驱动到多元盈利 政策全面赋能 2025年4月&#xff0c;国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》&#xff0c;首次明确虚拟电厂为“独立市场主体”&#xff0c;提出硬性目标&#xff1a;2027年全国调节能力≥2000万千瓦&#xff0…...