【基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型】
逻辑回归进行鸢尾花分类的案例
背景说明:
基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。
依赖
ThisBuild / version := "0.1.0-SNAPSHOT" ThisBuild / scalaVersion := "2.13.11" lazy val root = (project in file(".")) .settings( name := "SparkLearning", idePackagePrefix := Some("cn.lh.spark"), libraryDependencies += "org.apache.spark" %% "spark-sql" % "3.4.1", libraryDependencies += "org.apache.spark" %% "spark-core" % "3.4.1", libraryDependencies += "org.apache.hadoop" % "hadoop-auth" % "3.3.6", libraryDependencies += "org.apache.spark" %% "spark-streaming" % "3.4.1", libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka-0-10" % "3.4.1", libraryDependencies += "org.apache.spark" %% "spark-mllib" % "3.4.1", libraryDependencies += "mysql" % "mysql-connector-java" % "8.0.30"
)
代码如下:
package cn.lh.spark import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, StringIndexerModel, VectorIndexer, VectorIndexerModel}
import org.apache.spark.ml.linalg.{Vectors,Vector}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession} case class Iris(features: org.apache.spark.ml.linalg.Vector, label: String) /** * 二项逻辑斯蒂回归来解决二分类问题 */
object MLlibLogisticRegression { def main(args: Array[String]): Unit = { val spark: SparkSession = SparkSession.builder().master("local[2]") .appName("Spark MLlib Demo List").getOrCreate() val irisRDD: RDD[Iris] = spark.sparkContext.textFile("F:\\niit\\2023\\2023_2\\Spark\\codes\\data\\iris.txt") .map(_.split(",")).map(p => Iris(Vectors.dense(p(0).toDouble, p(1).toDouble, p(2).toDouble, p(3).toDouble), p(4).toString())) import spark.implicits._ val data: DataFrame = irisRDD.toDF() data.show() data.createOrReplaceTempView("iris") val df: DataFrame = spark.sql("select * from iris where label != 'Iris-setosa'") df.map(t => t(1)+":"+t(0)).collect().foreach(println) // 构建ML的pipeline val labelIndex: StringIndexerModel = new StringIndexer().setInputCol("label") .setOutputCol("indexedLabel").fit(df) val featureIndexer: VectorIndexerModel = new VectorIndexer().setInputCol("features") .setOutputCol("indexedFeatures").fit(df) // 划分数据集 val Array(trainingData, testData) = df.randomSplit(Array(0.7, 0.3)) // 设置逻辑回归模型参数 val lr: LogisticRegression = new LogisticRegression().setLabelCol("indexedLabel") .setFeaturesCol("indexedFeatures").setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8) // 设置一个labelConverter,目的是把预测的类别重新转化成字符型的 val labelConverter: IndexToString = new IndexToString().setInputCol("prediction") .setOutputCol("predictedLabel").setLabels(labelIndex.labels) // 构建pipeline,设置stage,然后调用fit()来训练模型 val lrPipeline: Pipeline = new Pipeline().setStages(Array(labelIndex, featureIndexer, lr, labelConverter)) val lrmodle: PipelineModel = lrPipeline.fit(trainingData) val lrPredictions: DataFrame = lrmodle.transform(testData) lrPredictions.select("predictedLabel", "label", "features", "probability") .collect().foreach { case Row(predictedLabel: String, label: String, features: Vector, prob: Vector) => println(s"($label, $features) --> prob=$prob, predicted Label=$predictedLabel")} // 模型评估 val evaluator: MulticlassClassificationEvaluator = new MulticlassClassificationEvaluator() .setLabelCol("indexedLabel").setPredictionCol("prediction") val lrAccuracy: Double = evaluator.evaluate(lrPredictions) println("Test Error = " + (1.0 - lrAccuracy)) val lrmodel2: LogisticRegressionModel = lrmodle.stages(2).asInstanceOf[LogisticRegressionModel] println("Coefficients: " + lrmodel2.coefficients+"Intercept: " + lrmodel2.intercept+"numClasses: "+lrmodel2.numClasses+"numFeatures: "+lrmodel2.numFeatures) spark.stop() } }
运行结果如下:

相关文章:
【基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型】
逻辑回归进行鸢尾花分类的案例 背景说明: 基于IDEA Spark 3.4.1 sbt 1.9.3 Spark MLlib 构建逻辑回归鸢尾花分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。 依赖 ThisBui…...
资深测试老鸟整理,性能测试-常见调优详细,卷起来...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 常见的一些性能缺…...
【第五章 flutter学习之flutter进阶组件-上篇】
文章目录 一、列表组件1.常规列表2.动态列表 二、FridView组件三、Stack层叠组件四、AspectRatio Card CircleAvatar组件五、按钮组件六、Stack组件七、Wrap组件八、StatefulWidget有状态组件总结 一、列表组件 1.常规列表 children: const <Widget>[ListTile(leading: …...
鸿蒙边缘计算网关正式开售
IDO-IPC3528鸿蒙边缘计算网关基于RK3568研发设计,采用22nm先进工艺制程,四核A55 CPU,主频高达2.0GHz,支持高达8GB高速LPDDR4,1T算力NPU,4K H.265/H264硬解码;视频输出接口HDMI2.0,双…...
Bytebase 2.5.0 - VCS 集成支持 Azure DevOps,支持达梦数据库
🚀 新功能 VCS 集成支持 Azure DevOps。研发版本支持达梦数据库。允许用户设置需要重新登录的频率。支持选择并导出数据库变更历史。新增 MySQL Schema 设计器。支持字段模板库。 🎄 改进 在 SQL 编辑器中,优化 MongoDB 的查询结果。优化 …...
tomcat通过systemctl启动时报错Cannot find /usr/local/tomcat/bin/setclasspath.sh
解决方法,检查自己的CATALINA_HOME和TOMCAT_HOME配置情况 我的配置在/etc/profile下的如下 使其立即生效 后将/usr/lib/systemd/system/tomcat.service中的CATALINA_HOME和TOMCAT_HOME和/etc/profile改一致 重新加载再重启解决 解决方法,检查自己的C…...
Django架构图
1. Django 简介 基本介绍 Django 是一个由 Python 编写的一个开放源代码的 Web 应用框架 使用 Django,只要很少的代码,Python 的程序开发人员就可以轻松地完成一个正式网站所需要的大部分内容,并进一步开发出全功能的 Web 服务 Django 本身…...
vue- 创建wms-web项目
vue 发展历程 安装vite 第一步 创建wms-web项目 第二步 打开文件夹并安装所有开发环境的依赖 都可以放静态资源 public>vite.svg 不会重新编译成其他名字 assets>vue.svg 会重新编译成一个随机的名称 重新编译 启动 第三步 spa 单页渲染 第四步 安装路由 第五步 …...
集成学习:机器学习模型如何“博采众长”
前置概念 偏差 指模型的预测值与真实值之间的差异,它反映了模型的拟合能力。 方差 指模型在不同的训练集上产生的预测结果的差异,它反映了模型的稳定性。 方差和偏差对预测结果所造成的影响 在机器学习中,我们通常希望模型的偏差和方差都…...
排序算法(二)
1.希尔排序-Shell Sort 1.算法原理 将未排序序列按照增量gap的不同分割为若干个子序列,然后分别进行插入排序,得到若干组排好序的序列; 缩小增量gap,并对分割为的子序列进行插入排序;最后一次的gap1,即整个…...
CVPR 2023 | 无监督深度概率方法在部分点云配准中的应用
注1:本文系“计算机视觉/三维重建论文速递”系列之一,致力于简洁清晰完整地介绍、解读计算机视觉,特别是三维重建领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, NeurIPS, ICLR, ICML, TPAMI, IJCV 等)。本次介绍的论文是:2023年,CVPR,…...
HTTP隧道识别与防御:机器学习的解决方案
随着互联网的快速发展,HTTP代理爬虫已成为数据采集的重要工具。然而,随之而来的是恶意爬虫对网络安全和数据隐私的威胁。为了更好地保护网络环境和用户数据,我们进行了基于机器学习的HTTP代理爬虫识别与防御的研究。以增强对HTTP代理爬虫的识…...
【MMU】认识 MMU 及内存映射的流程
MMU(Memory Manager Unit),是内存管理单元,负责将虚拟地址转换成物理地址。除此之外,MMU 实现了内存保护,进程无法直接访问物理内存,防止内存数据被随意篡改。 目录 一、内存管理体系结构 1、…...
Clion开发Stm32之存储模块(W25Q64)驱动编写
前言 涵盖之前文章: Clion开发STM32之HAL库SPI封装(基础库) W25Q64驱动 头文件 #ifndef F1XX_TEMPLATE_MODULE_W25Q64_H #define F1XX_TEMPLATE_MODULE_W25Q64_H#include "sys_core.h" /* Private typedef ---------------------------------------------------…...
SpringBoot动态切换数据源
SpringBoot整合多数据源,动态添加新数据源并切换 1.需求2.创建数据源配置类3.切换数据源4.切换数据源管理类5.使用案例5.AOP切面拦截 1.需求 低代码服务需要给多套系统进行功能配置,要求表结构必须生成在对应系统的数据库中,所以表结构的生成…...
[C++项目] Boost文档 站内搜索引擎(4): 搜索的相关接口的实现、线程安全的单例index接口、cppjieba分词库的使用、综合调试...
有关Boost文档搜索引擎的项目的前三篇文章, 已经分别介绍分析了: 项目背景: 🫦[C项目] Boost文档 站内搜索引擎(1): 项目背景介绍、相关技术栈、相关概念介绍…文档解析、处理模块parser的实现: 🫦[C项目] Boost文档 站内搜索引擎(2): 文档文本解析模块…...
SAP ABAP元素域值描述通过函数(DD_DOMVALUE_TEXT_GET)获取
代码如下: PERFORM FRM_GET_DOMVALUE_TEXT USING ZMMD_ZFLZQ <GFS_DATA>-ZFLZQ CHANGING <GFS_DATA>-ZZQTEXT .IF <GFS_DATA>-ZXYLX IS NOT INITIAL .PERFORM FRM_GET_DOMVALUE_TEXT USING ZMMD_ZXYLX <GFS_DATA>-ZXYLX CHANGING <GFS_…...
原型模式与享元模式:提升系统性能的利器
原型模式和享元模式,前者是在创建多个实例时,对创建过程的性能进行调优;后者是用减 少创建实例的方式,来调优系统性能。这么看,你会不会觉得两个模式有点相互矛盾呢? 在有些场景下,我们需要重复…...
uniapp封装手写签名
组件代码 cat-signature <template><view v-if"visibleSync" class"cat-signature" :class"{visible:show}" touchmove.stop.prevent"moveHandle"><view class"mask" tap"close" /><view c…...
掌握 JVM 调优命令
常用命令 1、jps查看当前 java 进程2、jinfo实时查看和调整 JVM 配置参数3、jstat查看虚拟机统计信息4、jstack查看线程堆栈信息5、jmap查看堆内存的快照信息 JVM 日常调优总结起来就是:首先通过 jps 命令查看当前进程,然后根据 pid 通过 jinfo 命令查看…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
