当前位置: 首页 > news >正文

【基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型】

逻辑回归进行鸢尾花分类的案例

背景说明:

基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。

依赖

ThisBuild / version := "0.1.0-SNAPSHOT"  ThisBuild / scalaVersion := "2.13.11"  lazy val root = (project in file("."))  .settings(  name := "SparkLearning",  idePackagePrefix := Some("cn.lh.spark"),  libraryDependencies += "org.apache.spark" %% "spark-sql" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-core" % "3.4.1",  libraryDependencies += "org.apache.hadoop" % "hadoop-auth" % "3.3.6",     libraryDependencies += "org.apache.spark" %% "spark-streaming" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka-0-10" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-mllib" % "3.4.1",  libraryDependencies += "mysql" % "mysql-connector-java" % "8.0.30"  
)

代码如下:

package cn.lh.spark  import org.apache.spark.ml.{Pipeline, PipelineModel}  
import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel}  
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator  
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, StringIndexerModel, VectorIndexer, VectorIndexerModel}  
import org.apache.spark.ml.linalg.{Vectors,Vector}  
import org.apache.spark.rdd.RDD  
import org.apache.spark.sql.{DataFrame, Row, SparkSession}  case class Iris(features: org.apache.spark.ml.linalg.Vector, label: String)  /**  * 二项逻辑斯蒂回归来解决二分类问题  */  
object MLlibLogisticRegression {  def main(args: Array[String]): Unit = {  val spark: SparkSession = SparkSession.builder().master("local[2]")  .appName("Spark MLlib Demo List").getOrCreate()  val irisRDD: RDD[Iris] = spark.sparkContext.textFile("F:\\niit\\2023\\2023_2\\Spark\\codes\\data\\iris.txt")  .map(_.split(",")).map(p =>  Iris(Vectors.dense(p(0).toDouble, p(1).toDouble, p(2).toDouble, p(3).toDouble), p(4).toString()))  import spark.implicits._  val data: DataFrame = irisRDD.toDF()  data.show()  data.createOrReplaceTempView("iris")  val df: DataFrame = spark.sql("select * from iris where label != 'Iris-setosa'")  df.map(t => t(1)+":"+t(0)).collect().foreach(println)  //    构建ML的pipeline  val labelIndex: StringIndexerModel = new StringIndexer().setInputCol("label")  .setOutputCol("indexedLabel").fit(df)  val featureIndexer: VectorIndexerModel = new VectorIndexer().setInputCol("features")  .setOutputCol("indexedFeatures").fit(df)  //    划分数据集  val Array(trainingData, testData) = df.randomSplit(Array(0.7, 0.3))  //    设置逻辑回归模型参数  val lr: LogisticRegression = new LogisticRegression().setLabelCol("indexedLabel")  .setFeaturesCol("indexedFeatures").setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)  //    设置一个labelConverter,目的是把预测的类别重新转化成字符型的  val labelConverter: IndexToString = new IndexToString().setInputCol("prediction")  .setOutputCol("predictedLabel").setLabels(labelIndex.labels)  //    构建pipeline,设置stage,然后调用fit()来训练模型  val lrPipeline: Pipeline = new Pipeline().setStages(Array(labelIndex, featureIndexer, lr, labelConverter))  val lrmodle: PipelineModel = lrPipeline.fit(trainingData)  val lrPredictions: DataFrame = lrmodle.transform(testData)  lrPredictions.select("predictedLabel", "label", "features", "probability")  .collect().foreach { case Row(predictedLabel: String, label: String, features: Vector, prob: Vector) =>  println(s"($label, $features) --> prob=$prob, predicted Label=$predictedLabel")}  //    模型评估  val evaluator: MulticlassClassificationEvaluator = new MulticlassClassificationEvaluator()  .setLabelCol("indexedLabel").setPredictionCol("prediction")  val lrAccuracy: Double = evaluator.evaluate(lrPredictions)  println("Test Error = " + (1.0 - lrAccuracy))  val lrmodel2: LogisticRegressionModel = lrmodle.stages(2).asInstanceOf[LogisticRegressionModel]  println("Coefficients: " + lrmodel2.coefficients+"Intercept: " +  lrmodel2.intercept+"numClasses: "+lrmodel2.numClasses+"numFeatures: "+lrmodel2.numFeatures)  spark.stop()  }  }

运行结果如下:
在这里插入图片描述

相关文章:

【基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型】

逻辑回归进行鸢尾花分类的案例 背景说明: 基于IDEA Spark 3.4.1 sbt 1.9.3 Spark MLlib 构建逻辑回归鸢尾花分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。 依赖 ThisBui…...

资深测试老鸟整理,性能测试-常见调优详细,卷起来...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 常见的一些性能缺…...

【第五章 flutter学习之flutter进阶组件-上篇】

文章目录 一、列表组件1.常规列表2.动态列表 二、FridView组件三、Stack层叠组件四、AspectRatio Card CircleAvatar组件五、按钮组件六、Stack组件七、Wrap组件八、StatefulWidget有状态组件总结 一、列表组件 1.常规列表 children: const <Widget>[ListTile(leading: …...

鸿蒙边缘计算网关正式开售

IDO-IPC3528鸿蒙边缘计算网关基于RK3568研发设计&#xff0c;采用22nm先进工艺制程&#xff0c;四核A55 CPU&#xff0c;主频高达2.0GHz&#xff0c;支持高达8GB高速LPDDR4&#xff0c;1T算力NPU&#xff0c;4K H.265/H264硬解码&#xff1b;视频输出接口HDMI2.0&#xff0c;双…...

Bytebase 2.5.0 - VCS 集成支持 Azure DevOps,支持达梦数据库

&#x1f680; 新功能 VCS 集成支持 Azure DevOps。研发版本支持达梦数据库。允许用户设置需要重新登录的频率。支持选择并导出数据库变更历史。新增 MySQL Schema 设计器。支持字段模板库。 &#x1f384; 改进 在 SQL 编辑器中&#xff0c;优化 MongoDB 的查询结果。优化 …...

tomcat通过systemctl启动时报错Cannot find /usr/local/tomcat/bin/setclasspath.sh

解决方法&#xff0c;检查自己的CATALINA_HOME和TOMCAT_HOME配置情况 我的配置在/etc/profile下的如下 使其立即生效 后将/usr/lib/systemd/system/tomcat.service中的CATALINA_HOME和TOMCAT_HOME和/etc/profile改一致 重新加载再重启解决 解决方法&#xff0c;检查自己的C…...

Django架构图

1. Django 简介 基本介绍 Django 是一个由 Python 编写的一个开放源代码的 Web 应用框架 使用 Django&#xff0c;只要很少的代码&#xff0c;Python 的程序开发人员就可以轻松地完成一个正式网站所需要的大部分内容&#xff0c;并进一步开发出全功能的 Web 服务 Django 本身…...

vue- 创建wms-web项目

vue 发展历程 安装vite 第一步 创建wms-web项目 第二步 打开文件夹并安装所有开发环境的依赖 都可以放静态资源 public>vite.svg 不会重新编译成其他名字 assets>vue.svg 会重新编译成一个随机的名称 重新编译 启动 第三步 spa 单页渲染 第四步 安装路由 第五步 …...

集成学习:机器学习模型如何“博采众长”

前置概念 偏差 指模型的预测值与真实值之间的差异&#xff0c;它反映了模型的拟合能力。 方差 指模型在不同的训练集上产生的预测结果的差异&#xff0c;它反映了模型的稳定性。 方差和偏差对预测结果所造成的影响 在机器学习中&#xff0c;我们通常希望模型的偏差和方差都…...

排序算法(二)

1.希尔排序-Shell Sort 1.算法原理 将未排序序列按照增量gap的不同分割为若干个子序列&#xff0c;然后分别进行插入排序&#xff0c;得到若干组排好序的序列&#xff1b; 缩小增量gap&#xff0c;并对分割为的子序列进行插入排序&#xff1b;最后一次的gap1&#xff0c;即整个…...

CVPR 2023 | 无监督深度概率方法在部分点云配准中的应用

注1:本文系“计算机视觉/三维重建论文速递”系列之一,致力于简洁清晰完整地介绍、解读计算机视觉,特别是三维重建领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, NeurIPS, ICLR, ICML, TPAMI, IJCV 等)。本次介绍的论文是:2023年,CVPR,…...

HTTP隧道识别与防御:机器学习的解决方案

随着互联网的快速发展&#xff0c;HTTP代理爬虫已成为数据采集的重要工具。然而&#xff0c;随之而来的是恶意爬虫对网络安全和数据隐私的威胁。为了更好地保护网络环境和用户数据&#xff0c;我们进行了基于机器学习的HTTP代理爬虫识别与防御的研究。以增强对HTTP代理爬虫的识…...

【MMU】认识 MMU 及内存映射的流程

MMU&#xff08;Memory Manager Unit&#xff09;&#xff0c;是内存管理单元&#xff0c;负责将虚拟地址转换成物理地址。除此之外&#xff0c;MMU 实现了内存保护&#xff0c;进程无法直接访问物理内存&#xff0c;防止内存数据被随意篡改。 目录 一、内存管理体系结构 1、…...

Clion开发Stm32之存储模块(W25Q64)驱动编写

前言 涵盖之前文章: Clion开发STM32之HAL库SPI封装(基础库) W25Q64驱动 头文件 #ifndef F1XX_TEMPLATE_MODULE_W25Q64_H #define F1XX_TEMPLATE_MODULE_W25Q64_H#include "sys_core.h" /* Private typedef ---------------------------------------------------…...

SpringBoot动态切换数据源

SpringBoot整合多数据源&#xff0c;动态添加新数据源并切换 1.需求2.创建数据源配置类3.切换数据源4.切换数据源管理类5.使用案例5.AOP切面拦截 1.需求 低代码服务需要给多套系统进行功能配置&#xff0c;要求表结构必须生成在对应系统的数据库中&#xff0c;所以表结构的生成…...

[C++项目] Boost文档 站内搜索引擎(4): 搜索的相关接口的实现、线程安全的单例index接口、cppjieba分词库的使用、综合调试...

有关Boost文档搜索引擎的项目的前三篇文章, 已经分别介绍分析了: 项目背景: &#x1fae6;[C项目] Boost文档 站内搜索引擎(1): 项目背景介绍、相关技术栈、相关概念介绍…文档解析、处理模块parser的实现: &#x1fae6;[C项目] Boost文档 站内搜索引擎(2): 文档文本解析模块…...

SAP ABAP元素域值描述通过函数(DD_DOMVALUE_TEXT_GET)获取

代码如下&#xff1a; PERFORM FRM_GET_DOMVALUE_TEXT USING ZMMD_ZFLZQ <GFS_DATA>-ZFLZQ CHANGING <GFS_DATA>-ZZQTEXT .IF <GFS_DATA>-ZXYLX IS NOT INITIAL .PERFORM FRM_GET_DOMVALUE_TEXT USING ZMMD_ZXYLX <GFS_DATA>-ZXYLX CHANGING <GFS_…...

原型模式与享元模式:提升系统性能的利器

原型模式和享元模式&#xff0c;前者是在创建多个实例时&#xff0c;对创建过程的性能进行调优&#xff1b;后者是用减 少创建实例的方式&#xff0c;来调优系统性能。这么看&#xff0c;你会不会觉得两个模式有点相互矛盾呢&#xff1f; 在有些场景下&#xff0c;我们需要重复…...

uniapp封装手写签名

组件代码 cat-signature <template><view v-if"visibleSync" class"cat-signature" :class"{visible:show}" touchmove.stop.prevent"moveHandle"><view class"mask" tap"close" /><view c…...

掌握 JVM 调优命令

常用命令 1、jps查看当前 java 进程2、jinfo实时查看和调整 JVM 配置参数3、jstat查看虚拟机统计信息4、jstack查看线程堆栈信息5、jmap查看堆内存的快照信息 JVM 日常调优总结起来就是&#xff1a;首先通过 jps 命令查看当前进程&#xff0c;然后根据 pid 通过 jinfo 命令查看…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...