Clickhouse学习系列——一条SQL完成gourp by分组与不分组数值计算
笔者在近一两年接触了Clickhouse数据库,在项目中也进行了一些实践,但一直都没有一些技术文章的沉淀,近期打算做个系列,通过一些具体的场景将Clickhouse的用法进行沉淀和分享,供大家参考。
首先我们假设一个Clickhouse数据表:
CREATE TABLE Test_Table (page_id String, /* 页面ID */user_id String, /* 用户ID */is_slow String, /* 请求是否慢 */url String, /* 请求URL */
) ENGINE = MergeTree()
ORDER BY (page_id, device_id);
这个表格的字段含义如注释,该表主要存储的数据是:
每个用户(user_id)在某个页面(page_id)发起的请求(url)是否耗时较长(is_slow),耗时较长我们简称“慢请求”
其中,一个用户可能在一个或多个页面发起一个或多个请求,每个请求可能是慢请求,也可能不是
is_slow的内容是枚举值,即:true 和 false
数据表格有了,我们还要设定一个业务需求
我们期望以页面的纬度,查看每个页面中有多少用户遇到了慢请求,并算出在这个页面慢请求用户占在所有页面发起请求的总用户数(无论是否发起了慢请求)的百分比
从业务角度上比较好理解,这个结果其实就是想知道这个页面的慢影响了多少人,占比是多少
从研发者的角度,一个页面一般是一个固定的团队成员开发,甚至就是一个团队成员开发,所以,这个角度主要面向问题的解决和责任的划分,同时也让项目的管理者,技术的管理者知道目前用户体验的痛点在哪里
场景有了,业务需求也有了,那么如何实现呢?
首先,我们要获取的内容有两个,一个是“每个页面中有多少用户遇到了慢请求”
这个比较简单:
SELECT page_id, count(DISTINCT device_id) AS slow_user_countFROM Test_TableWHEREand is_slow = 'true'group by page_id
另一个要获取的是“在所有页面发起请求的总用户数”
SELECT count(DISTINCT device_id) AS total_user_countFROM Test_Table
最后,我们需要获得“在这个页面慢请求用户占在所有页面发起请求的总用户数(无论是否发起了慢请求)的百分比”
这里一般来说,比较常见的方法是使用With来进行拼接:
WITH slow_users AS (SELECT page_id, count(DISTINCT device_id) AS slow_user_countFROM Test_TableWHERE is_slow = 'true'group by page_id
),
total_users AS (SELECT count(DISTINCT device_id) AS total_user_countFROM Test_Table
)
SELECTslow_users.page_id,slow_users.slow_user_count,total_users.total_user_count,slow_user_count * 100.0 / total_users.total_user_count AS slow_user_percentage
FROMslow_users,total_users
ORDER BYslow_user_percentage DESC;
嗯,这个需求做完了,是不是很简单,貌似不熟悉ClickHouse的同学也能写
但既然笔者来写这篇文章,肯定不是想用,这么简单的方案,更何况,这个SQL本身还是有问题
第一个问题是:去重函数的性能问题
首先在Clickhouse里面有多个去重计数的函数,主要包含两类:
1.非精确去重函数:uniq、uniqHLL12、uniqCombined
2.精确去重函数:uniqExact、groupBitmap
从官网资料上来看:
在非精确去重函数中:
uniq函数使用自适应采样算法,
uniqHLL12函数使用的是HyperLogLog 算法
uniqCombined函数使用三种算法的组合:数组、哈希表和包含错误修正表的HyperLogLog算法
官方推荐:uniq和uniqCombined函数,不推荐uniqCombined函数
同时对于uniq和uniqCombined的区别上,官方给出的建议是:

在精确去重函数中:
uniqExact函数是uniq系列方法中的一个,比 uniq 使用更多的内存,因为状态的大小随着不同值的数量的增加而无界增长。参数可以是Tuple, Array, Date, DateTime, String,或数字类型。
groupBitmap函数比较特殊,参数得是一个无符号整数列,算法主要用的是“位图或聚合计算”
从这篇文章中查看了两个函数的源码:
/ count(distinct)
// HashSetTable
void merge(const Self & rhs){if (!this->hasZero() && rhs.hasZero()){this->setHasZero();++this->m_size;}for (size_t i = 0; i < rhs.grower.bufSize(); ++i)if (!rhs.buf[i].isZero(*this))this->insert(rhs.buf[i].getValue());}
// groupBitmap
// RoaringBitmapWithSmallSet
void merge(const RoaringBitmapWithSmallSet & r1){if (r1.isLarge()){if (isSmall())toLarge();*rb |= *r1.rb;}else{for (const auto & x : r1.small)add(x.getValue());}}
uniqExact函数使用了HashSetTable数据结构来解决,这里是比较费内存的,所以耗时也比较长
groupBitmap函数使用了RoaringBitmap,一个低内存去重方案,具体的算法参考
大数据分析常用去重算法分析『Bitmap篇』
从行业测试的结果上来看:
从这篇文章来看,这几个方法的效果如下:


可以看到精确去重函数的耗时是比较长的,非精确去重函数的误差在0.5%以内,而在实际的也场景中,很多数据分析平台更多的是需要一个数量级的概念,而不需要一个精确的数据,比如一个产品的UV为2600万,这个2600万就是一个概略数字,且随着变动越大,故可以用非精确去重函数
在上面的SQL中DISTINCT方法实际上是在用uniqExact,也就是最耗时的精确去重函数,在这个场景下,我们假设用户数据量比较多,请求数据量也比较多,我们更关注哪个页面问题多,问题大,而不是有精确的多少个慢请求数,符合非精确去重函数的场景,
那这里进行修改:
/* 精确但耗时的方法 */
COUNT(DISTINCT device_id) FILTER (WHERE is_slow = 'true') AS slow_user_count/* 不精确但快速的方法*/
uniqIf(device_id, is_slow = 'true') AS slow_user_count
知识点:上图中,除了将DISTINCT修改uniq外,还增加了如果增加了IF判断应该怎么写的语法
第二个问题是:With用法的性能问题
在Clickhouse,说起来,With有两种用法,
一种是通用SQL常见的用法 :with alias as (…),这个叫CTE,common table expression,是SQL定义中的一部份,按照这篇文章来看:
The common table expression (CTE) is a powerful construct in SQL that helps simplify a query. CTEs work as virtual tables (with records and columns), created during the execution of a query, used by the query, and eliminated after query execution. CTEs often act as a bridge to transform the data in source tables to the format expected by the query.
A common table expression, or CTE, is a temporary named result set created from a simple
SELECTstatement that can be used in a subsequentSELECTstatement. Each SQL CTE is like a named query, whose result is stored in a virtual table (a CTE) to be referenced later in the main query.
就是建立一个虚拟表,来存储中间数据,然后进行使用,值得一提的是,子查询和CTE嵌套的性能理论上是一样的,但后者的可读性更好,不过在某些关系型数据库的引擎上略有区别,但本质上区别不大
比如上一章节根据业务输出的带With的SQL可以转换成以下嵌套子查询
/*不带with版本*/
SELECT page_id,COUNT(DISTINCT device_id) FILTER (WHERE is_slow = 'true') AS slow_user_count,(SELECT COUNT(DISTINCT device_id)FROM Test_Table) AS total_user_count,slow_user_count * 100.0 / total_user_count AS slow_user_percentage
FROM Test_Table
WHERE is_slow = 'true'
group by page_id
ORDER BY slow_user_percentage DESC;
但意义不大,因为性能没啥变化,两种方式都是二次查询(读两次盘)
另一种是with (…) as alias,这个是ClickHouse的宏展开一样的能力,是Clickhouse独有的语法
根据官方的文档:主要有四种用法
1.使用常量作为"变量"
WITH '2019-08-01 15:23:00' as ts_upper_bound
SELECT *
FROM hits
WHEREEventDate = toDate(ts_upper_bound) ANDEventTime <= ts_upper_bound;
2.封装表达式
WITH sum(bytes) as s
SELECTformatReadableSize(s),table
FROM system.parts
GROUP BY table
ORDER BY s;
3.使用标量子查询的结果(这个和前面的with有点像,但不能用.xxx的形式获取值,且Select只能一个值)
/* this example would return TOP 10 of most huge tables */
WITH(SELECT sum(bytes)FROM system.partsWHERE active) AS total_disk_usage
SELECT(sum(bytes) / total_disk_usage) * 100 AS table_disk_usage,table
FROM system.parts
GROUP BY table
ORDER BY table_disk_usage DESC
LIMIT 10;
4.在子查询中重用表达式
WITH test1 AS (SELECT i + 1, j + 1 FROM test1)
SELECT * FROM test1;
其中第一个、第二个相当于直接替换,没有啥影响,而第三种、第四种和CTE的作用差不多,都会逐个去执行SQL,也就意味着二次查询(读两次盘)
所以看起来使用With无法避免二次读盘的问题
那这里,有没有一次读盘就可以解决这里的问题呢?看起来group by分组前后的数据做数值计算也是一个经典场景
那这里就得用到Clickhouse经典的窗口函数和物化视图了
窗口函数这篇文章有比较详细的介绍
物化试图这篇文章有比较详细的介绍
先看结果SQL
/* 一条sql的版本*/
SELECT page_id,uniqIf(device_id, is_slow = 'true') AS slow_user_count,uniq(device_id) AS page_user_count,uniqMerge(uniqState(device_id)) OVER () as total_user_count
FROM Test_Table
group by page_id
前两个一个是某个页面慢请求的用户数,一个该页面所欲请求的用户数
第三个需要拆开来看, uniqState是一个物化视图的方法,可以理解成一个AggregateFunction类型的数据的中间状态,这里可以理解基于每个页面都生成了一个数组,存储对应的用户名单
而uniqMerge可以将多个AggregateFunction类型的中间状态组合计算为最终的聚合结果,比如以下两个SQL是等价的:
SELECT uniq(UserID) FROM tableSELECT uniqMerge(state) FROM (SELECT uniqState(UserID) AS state FROM table GROUP BY RegionID)
当然在这里用到的是uniqState 和 uniqMerge
这里可以换成任何以-State和-Merge为后缀的方法
回到这个SQL,这里uniqMerge(uniqState(device_id)) OVER () 相当于合并了“基于每个页面都生成的数组,每个数组存储对应的用户名单”,即访问所有页面的所有用户数
这样就比较优雅的实现了不用with的问题,且这里的性能也是比较快的
相关文章:
Clickhouse学习系列——一条SQL完成gourp by分组与不分组数值计算
笔者在近一两年接触了Clickhouse数据库,在项目中也进行了一些实践,但一直都没有一些技术文章的沉淀,近期打算做个系列,通过一些具体的场景将Clickhouse的用法进行沉淀和分享,供大家参考。 首先我们假设一个Clickhouse数…...
做好“关键基础设施提供商”角色,亚马逊云科技加快生成式AI落地
一场关于生产力的革命已在酝酿之中。全球管理咨询公司麦肯锡在最近的报告《生成式人工智能的经济潜力:下一波生产力浪潮》中指出,生成式AI每年可能为全球经济增加2.6万亿到4.4万亿美元的价值。在几天前的亚马逊云科技纽约峰会中,「生成式AI」…...
如何使用 ChatGPT 规划家居装修
你正在计划家庭装修项目,但不确定从哪里开始?ChatGPT 随时为你提供帮助。从集思广益的设计理念到估算成本,ChatGPT 可以简化你的家居装修规划流程。在本文中,我们将讨论如何使用 ChatGPT 有效地规划家居装修,以便你的项…...
题解 | #1002.Random Nim Game# 2023杭电暑期多校7
1002.Random Nim Game 诈骗博弈题 题目大意 Nim是一种双人数学策略游戏,玩家轮流从不同的堆中移除棋子。在每一轮游戏中,玩家必须至少取出一个棋子,并且可以取出任意数量的棋子,条件是这些棋子都来自同一个棋子堆。走最后一步棋…...
篇九:组合模式:树形结构的力量
篇九:“组合模式:树形结构的力量” 开始本篇文章之前先推荐一个好用的学习工具,AIRIght,借助于AI助手工具,学习事半功倍。欢迎访问:http://airight.fun/。 另外有2本不错的关于设计模式的资料,…...
【注册表】windows系统注册表常用修改方案
文章目录 ◆ 修改IE浏览器打印页面参数设置◆气泡屏幕保护◆彩带屏幕保护程序◆过滤IP(适用于WIN2000)◆禁止显示IE的地址栏◆禁止更改IE默认的检查(winnt适用)◆允许DHCP(winnt适用)◆局域网自动断开的时间(winnt适用)◆禁止使用“重置WEB设置”◆禁止更…...
ant-design-vue 4.x升级问题-样式丢失问题
[vue] ant-design-vue 4.x升级问题-样式丢失问题 项目环境问题场景解决方案 该文档是在升级ant-design-vue到4.x版本的时候遇到的问题 项目环境 "vue": "^3.3.4", "ant-design-vue": "^4.0.0", "vite": "^4.4.4&quo…...
【果树农药喷洒机器人】Part3:变量喷药系统工作原理介绍
本专栏介绍:免费专栏,持续更新机器人实战项目,欢迎各位订阅关注。 关注我,带你了解更多关于机器人、嵌入式、人工智能等方面的优质文章! 文章目录 一、变量喷药系统工作原理二、液压通路设计与控制系统封装2.1液压通路…...
GoogLeNet创新点总结
GoogLeNet是一种深度卷积神经网络架构,于2014年由Google团队提出,是ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛的冠军模型,其创新点主要集中在以下几个方面: Inception模块&#…...
不同路径1、2、3合集(980. 不同路径 III)
不同路径一 矩形格,左上角 到 右下角。 class Solution {int [] directX new int[]{-1,1,0,0};int [] directY new int[]{0,0,-1,1};int rows;int cols;public int uniquePathsIII(int[][] grid) {if (grid null || grid.length 0 || grid[0].length 0) {ret…...
【云原生】Yaml文件详解
目录 一、YAML 语法格式1.1查看 api 资源版本标签1.2 写一个yaml文件demo1.3 详解k8s中的port 一、YAML 语法格式 Kubernetes 支持 YAML 和 JSON 格式管理资源对象JSON 格式:主要用于 api 接口之间消息的传递YAML格式:用于配置和管理,YAML 是…...
ffmpeg下载安装教程
ffmpeg官网下载地址https://ffmpeg.org/download.html 这里以windows为例,鼠标悬浮到windows图标上,再点击 Windows builds from gyan.dev 或者直接打开 https://www.gyan.dev/ffmpeg/builds/ 下载根据个人需要下载对应版本 解压下载的文件,并复制bin所在目录 新打开一个命令…...
uniapp之当你问起“tab方法触发时eventchange也跟着触发了咋办”时
我相信没有大佬会在这个问题上卡两个小时吧,记下来大家就当看个乐子了。 当时问题就是,点击tab头切换的时候,作为tab滑动事件的eventchange同时触发了,使得接口请求了两次 大概是没睡好,我当时脑子老想着怎么阻止它冒…...
TS 踩坑之路(四)之 Vue3
一、在使用定义默认值withDefaults和defineProps 组合时,默认值设置报错 代码案例 报错信息 不能将类型“{ isBackBtn: false; }”分配给类型“(props: PropsType) > RouteMsgType”。 对象字面量只能指定已知属性,并且“isBackBtn”不在类型“(pro…...
【音视频】edge与chrome在性能上的比较
目录 结论先说 实验 结论 实验机器的cpu配置 用EDGE拉九路编辑 google拉五路就拉不出来了 资源使用情况 edge报错编辑 如果服务器端 性能也满 了,就会不回复;验证方式 手动敲 8081,不回应。 结论先说 实验 用chrome先拉九路&#…...
Docker Compose编排部署LNMP服务
目录 安装docker-ce 阿里云镜像加速器 文件 启动 安装docker-ce [rootlocalhost ~]# wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo --2023-08-03 18:34:32-- http://mirrors.aliyun.com/repo/Centos-7.repo 正在解析主机 m…...
git使用(常见用法)
一.下载git git官方下载跳转 安装简单,有手就行 二. git的简单使用 1. 连接远程仓库 #初始化 git init #配置账户 git config --global user.name “输入你的用户名” git config --global user.email “输入你的邮箱” git config --list #--q退出 #配置验证邮箱 ssh-key…...
用例拆分情况考虑方案
文章目录 1、方案一方案概述方案分析(1) 把对应图商地图的逻辑给分离开(2) 要使用命令行的方式执行方法 2、方案二3、最终决定 1、方案一 方案概述 每个图商(GD、BD、自建)拆分成单独的类 把参数化的几个图商类别拆分成对应的图商类,在每个类…...
一文搞懂IS-IS报文通用格式
报文格式 IS-IS报文是直接封装在数据链路层的帧结构中的。PDU可以分为两个部分,报文头和变长字段部分。其中头部又可分为通用头部和专用头部。对于所有PDU来说,通用报头都是相同的,但专用报头根据PDU类型不同而有所差别。 IS-IS的PDU有4种类…...
位置参数 关键字参数
在Python中,函数参数可以按照位置或关键字来传递。这导致了两种主要的参数类型:位置参数和关键字参数。 位置参数: 这是最常见的参数类型,当我们调用函数时,传递给函数的参数值是按照它们的位置来确定的。例如,def fun…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
