【图像去噪】基于混合自适应(EM 自适应)实现自适应图像去噪研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码实现
💥1 概述
图像去噪是图像处理领域中的一个重要问题,其目标是通过对图像进行处理,减少或去除图像中的噪声,提高图像质量。混合自适应(EM 自适应)是一种常用的图像去噪方法之一。
混合自适应的基本思想是将图像中的噪声和信号分离开来,并分别对其进行处理。包括以下步骤:
1. 初始估计:首先需要对图像进行一个初始估计,可以使用一些简单的滤波方法,如中值滤波器等。
2. 估计噪声模型:通过对图像进行统计分析,估计出图像中的噪声模型,如高斯噪声、椒盐噪声等。
3. 分离噪声和信号:利用估计的噪声模型,将图像中的噪声和信号分离开来,可以采用波尔兹曼机、高斯混合模型等方法。
4. 自适应滤波:对分离得到的噪声和信号分别进行自适应滤波,针对不同的噪声模型可以采用不同的滤波器,常用的有均值滤波、维纳滤波、非局部均值滤波等。
5. 重组:将滤波后的噪声和信号重组得到最终的去噪图像。
混合自适应方法能够根据图像中的噪声模型进行自适应处理,对不同类型的噪声都有较好的去除效果。然而,该方法在计算复杂度和处理时间上可能较高,并且需要提前对图像的噪声模型进行估计,对于未知噪声模型的图像去噪可能会存在一定的挑战。因此,在实际应用中需要根据具体情况选择合适的图像去噪方法。
📚2 运行结果
主函数代码:
clear;
close all;
addpath('code');
addpath('data/standard_images')
load GSModel_8x8_200_2M_noDC_zeromean.mat
GMM.ncomponents = GS.nmodels;
GMM.mus = GS.means;
GMM.covs = GS.covs;
GMM.weights = GS.mixweights;
clear GS;
x = im2double(imread('House256.png'));
sigmaNoise = 20/255;
y = x + sigmaNoise * randn(size(x)); % noisy test image
%%%% EPLL denoising %%%%
xEPLL = y;
for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]
[xEPLL, psnr_EPLL, ssim_EPLL] = MAP_GMM(x, y, xEPLL, sigmaNoise, sigma, GMM);
end
fprintf('PSNR(EPLL) is:%.2f\n', psnr_EPLL);
fprintf('SSIM(EPLL) is:%.4f\n', ssim_EPLL);
%%%% EM adaptation using EPLL denoised image and MAP denoising with adapted GMM %%%%
xHat = xEPLL;
epsilon = 0.01;
b = randn(size(y));
n = numel(y);
xEPLL1 = y + epsilon*b;
for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]
[xEPLL1, ~, ~] = MAP_GMM(x, y + epsilon*b, xEPLL1, sigmaNoise, sigma, GMM);
end
xHat1 = xEPLL1;
div = (b(:)'*(xHat1(:) - xHat(:))) / (n*epsilon);
beta_opt = (sqrt(mean((y(:) - xHat(:)).^2) - sigmaNoise^2 + 2*sigmaNoise^2*div)) / sigmaNoise;
aGMM = EM_adaptation(GMM, xEPLL, beta_opt * sigmaNoise, 1);
xAdapted_EPLL = y;
for sigma = sigmaNoise * [1, 1/sqrt(4), 1/sqrt(8), 1/sqrt(16), 1/sqrt(32)]
[xAdapted_EPLL, psnr_adapted, ssim_adapted] = MAP_GMM(x, y, xAdapted_EPLL, sigmaNoise, sigma, aGMM);
end
fprintf('PSNR(adapted by EPLL image) is:%.2f\n', psnr_adapted);
fprintf('SSIM(adapted by EPLL image) is:%.4f\n', ssim_adapted);
return
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1] E. Luo, S. H. Chan, and T. Q. Nguyen, "Adaptive Image Denoising by Mixture Adaptation," IEEE Trans. Image Process. 2016.
[2] S. H. Chan, E. Luo and T. Q. Nguyen, "Adaptive Patch-based Image Denoising by EM-adaptation," in Proc. IEEE Global Conf. Signal Information Process. (GlobalSIP'15), Dec. 2015.
🌈4 Matlab代码实现
相关文章:

【图像去噪】基于混合自适应(EM 自适应)实现自适应图像去噪研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

[保研/考研机试] KY102 计算表达式 上海交通大学复试上机题 C++实现
描述 对于一个不存在括号的表达式进行计算 输入描述: 存在多组数据,每组数据一行,表达式不存在空格 输出描述: 输出结果 示例1 输入: 6/233*4输出: 18思路: ①设立运算符和运算数两个…...

源码解析Collections.sort ——从一个逃过单测的 bug 说起
本文从一个小明写的bug 开始,讲bug的发现、排查定位,并由此展开对涉及的算法进行图解分析和源码分析。 事情挺曲折的,因为小明的代码是有单测的,让小明更加笃定自己写的没问题。所以在排查的时候,也经历了前世的500年…...

一周 AIGC 丨苹果下架多款 AIGC 应用,阿里云开源通义千问 70 亿参数模型
多个 AIGC 应用在苹果应用商店下架,包含数据采集和使用不够规范等问题。阿里云开源通义千问 70 亿参数模型,包括通用模型 Qwen-7 B 和对话模型 Qwen-7 B-Chat。腾讯混元大模型开始应用内测,内部多个业务线接入测试。百度智能云“千帆大模型平…...

tomcat虚拟主机配置演示
一.新建用于显示的index.jsp文件,写入内容 二.修改tomcat/apache-tomcat-8.5.70/conf/server.xml配置文件 匹配到Host那部分,按上面格式在后面添加自己的域名和文件目录信息 主要是修改name和docBase 保存退出重启tomcat,确保tomcat运行…...

Nacos基本应用
Nacos 基本应用 Nacos 提供了 SDK 和 OpenAPI 方式来完成服务注册与发现等操作,SDK 实际上是对于 http 请求的封装。 微服务架构的电子商务平台,其中包含订单服务、商品服务和用户服务。可以使用 Nacos 作为服务注册和发现的中心,以便各个微…...
UML的类图规则
public:号 private:-号 protected:#号类图多重关系: 泛化关系: 概念:也就是继承关系。表示方式:用带空心三角形的直线来表示。例子:动物和猫,人和老师关联关系: 概念:用于表示一类对…...
uniapp实现微信小程序长按二维码扫码加群或好友
<template><view><view class"tit">欢迎扫码加入</view><image show-menu-by-longpress"true" src"/static/img/qrcode/1.jpg" class"btn-icon" click"previewImage"></image></vie…...
轮转数组(每日一题)
“路虽远,行则将至” ❤️主页:小赛毛 ☕今日份刷题:轮转数组 题目链接:轮转数组 题目描述: 给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。 示例1: 输入…...

jmeter使用步骤
jmeter 使用步骤 1,进入jmeter目录中的bin目录,双击jmeter.bat 打开 2,右键test plan 创建线程组 3,配置线程组参数 4,右键刚刚创建的线程组,创建请求,填写请求地址 5,需要携带to…...
Ts中泛型的理解与使用
一、什么是泛型 在定义函数,定义接口或定义class类的时候,不先规定其类型,在使用的时候进行定义类型。 二、使用 1、定义函数: // 函数类型 function AA<T>(arg:T):T{return arg } AA<number>(1) AA<string>…...
uniapp使用eatchs雷达图
引入插件 <template><view class"page"><view class"AllBox"><view class"topTit">标题</view><view class"leftTit">对比分析</view><view class"tableBox"><view cl…...
PostgreSQL jsonb
PostgreSQL jsonb jsonb 函数以及操作符 在PostgreSQL中,有许多用于处理JSONB数据类型的内置函数和操作符。下面列出了一些常用的JSONB函数和操作符: jsonb_pretty(jsonb) 该函数将JSONB数据格式化为易读的多行字符串。jsonb_typeof(jsonb) 该函数返回…...

Spring系列四:AOP切面编程
文章目录 💗AOP-官方文档🍝AOP 讲解🍝AOP APIs 💗动态代理🍝初始动态代理🍝动态代理深入🍝AOP问题提出📗使用土方法解决📗 对土方法解耦-开发最简单的AOP类📗…...

VS+Qt+C++旅游景区地图导航源码实例
程序示例精选 VSQtC旅游景区地图导航 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对<<VSQtC旅游景区地图导航>>编写代码,代码整洁,规则,易读。…...

回调函数和一般函数的区别
回调函数:不是我能控制的,通过外界信号触发调用,例如下面是chatter 一般函数:我能控制的,顺序调用...

使用vite创建Vue/React前端项目,配置@别名和Sass样式,又快又方便
Vite官方网站:Vite | 下一代的前端工具链 Vite 并不是基于 Webpack 的,它有自己的开发服务器,利用浏览器中的原生 ES 模块。这种架构使得 Vite 比 Webpack 的开发服务器快了好几个数量级。Vite 采用 Rollup 进行构建,速度也更快…...

从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树
目录 从前序与中序遍历序列构造二叉树从中序与后序遍历序列构造二叉树 从前序与中序遍历序列构造二叉树 题目链接 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返…...
【JS常见数据结构】
JS数据结构 前言数组JavaScript 中数组的常见操作:1. 创建数组:2. 访问数组元素:3. 插入元素:4. 删除元素:5. 查询元素: 链表单向链表双向链表循环链表 栈队列树二叉树示例 图图的定义图的分类图的表示方法…...

算法基础之插入排序
1、插入排序基本思想 插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序)&a…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...

srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...