Python-OpenCV中的图像处理-图像平滑
Python-OpenCV中的图像处理-图像平滑
- 图像平滑
- 平均滤波
- 高斯模糊
- 中值模糊
- 双边滤波
图像平滑
使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊一点。(当然,也有一些模糊技术不会模糊掉边界)。
平均滤波
这是由一个归一化卷积框完成的。他只是用卷积框覆盖区域所有像素的平均值来代替中心元素。可以使用函数 cv2.blur() 和 cv2.boxFilter() 来完这个任务。可以同看查看文档了解更多卷积框的细节。我们需要设定卷积框的宽和高。
一个3x3的归一化卷积框:
K = 1 9 [ 1 1 1 1 1 1 1 1 1 ] K=\frac{1}{9}\left[\begin{matrix} 1&1&1 \\1&1&1\\1&1&1\end{matrix}\right] K=91 111111111
注意:如果不想使用归一化卷积框,你应该使用 cv2.boxFilter(),这时要传入参数 normalize=False。
dst=cv2.boxFilter(src,ddepth,ksize)
import numpy as np
import cv2
from matplotlib import pyplot as plt# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):result = image.copy()# 测量图片的长和宽w, h, = image.shape[:2]# 生成n个椒盐噪声for i in range(n):x = np.random.randint(1, w)y= np.random.randint(1, h)if np.random.randint(0, 2) == 0 :result[x, y] = 0else:result[x,y] = 255return result# 平均
# 这是由一个归一化卷积框完成的,
# cv2.blur()和cv2.boxFiter()来实现。
img = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)# 原图添加椒盐噪声
saltnoise_img = add_peppersalt_noise(img, 10000)blur = cv2.blur(saltnoise_img, (5,5))
boxfilter = cv2.boxFilter(saltnoise_img, -1, (3,3))
# boxfilter = cv2.boxFilter(saltnoise_img, -1, (3,3), normalize=0)plt.subplot(221), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)), plt.title('origin'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(cv2.cvtColor(saltnoise_img, cv2.COLOR_BGR2RGB)), plt.title('add noise'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)), plt.title('blur'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(cv2.cvtColor(boxfilter, cv2.COLOR_BGR2RGB)), plt.title('boxfilter'), plt.xticks([]), plt.yticks([])
plt.show()
高斯模糊
现在把卷积核换成高斯核(简单来说,方框不变,将原来每个方框的值是相等的,现在里面的值是符合高斯分布的,方框中心的值最大,其余方框根据距离中心元素的距离递减,构成一个高斯小山包。原来的求平均数现在变成求加权平均数,全就是方框里的值)。实现的函数是 cv2.GaussianBlur()。我们需要指定高斯核的宽和高(必须是奇数)。以及高斯函数沿 X, Y 方向的标准差。如果我们只指定了 X 方向的的标准差, Y 方向也会取相同值。如果两个标准差都是 0,那么函数会根据核函数的大小自己计算。高斯滤波可以有效的从图像中去除高斯噪音。如果你愿意的话,你也可以使用函数 cv2.getGaussianKernel() 自己构建一个高斯核。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 高斯模糊
# 卷积核换成高斯核,即方框不变,将原来方框相等的值,换成符合高斯分部的值,方框中心值最大,其余值递减,构成一个高斯小山包
# 高斯核的宽和高必须是奇数# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):result = image.copy()# 测量图片的长和宽w, h, = image.shape[:2]# 生成n个椒盐噪声for i in range(n):x = np.random.randint(1, w)y= np.random.randint(1, h)if np.random.randint(0, 2) == 0 :result[x, y] = 0else:result[x,y] = 255return result# 获取高斯核
k1 = cv2.getGaussianKernel(3, 1)
k2 = cv2.getGaussianKernel(5,2)
print(k1)
print(k2)# 彩色图像高斯模糊
img = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
img = add_peppersalt_noise(img)
dst1 = cv2.GaussianBlur(img, (5,5), 0)# 灰度图像高斯模糊
gray = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_GRAYSCALE)
gray = add_peppersalt_noise(gray)
dst2 = cv2.GaussianBlur(gray, (5,5), 0)plt.subplot(221), plt.imshow(img, 'gray'), plt.title('original'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(dst1, 'gray'), plt.title('gaussianBlur'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(gray, 'gray'), plt.title('gray'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(dst2, 'gray'), plt.title('gaussianBlur'), plt.xticks([]), plt.yticks([])
plt.show()
中值模糊
顾名思义就是用与卷积框对应像素的中值来替代中心像素的值。这个滤波器经常用来去除椒盐噪声。前面的滤波器都是用计算得到的一个新值来取代中心像素的值,而中值滤波是用中心像素周围(也可以使他本身)的值来取代他。他能有效的去除噪声。卷积核的大小也应该是一个奇数。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 中值滤波
# 在图片上生成椒盐噪声
def add_peppersalt_noise(image, n=10000):result = image.copy()# 测量图片的长和宽w, h, = image.shape[:2]# 生成n个椒盐噪声for i in range(n):x = np.random.randint(1, w)y= np.random.randint(1, h)if np.random.randint(0, 2) == 0 :result[x, y] = 0else:result[x,y] = 255return resultimg = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
img = add_peppersalt_noise(img)
median = cv2.medianBlur(img, 5)gray = cv2.imread('./resource/opencv/image/logo/opencv-logo-white.png', cv2.IMREAD_GRAYSCALE)
gray = add_peppersalt_noise(gray)
median_gray = cv2.medianBlur(gray, 5)plt.subplot(221), plt.imshow(img, 'gray'), plt.title('original')
plt.subplot(222), plt.imshow(median, 'gray'), plt.title('medianBlur')
plt.subplot(223), plt.imshow(gray, 'gray'), plt.title('gray')
plt.subplot(224), plt.imshow(median_gray, 'gray'), plt.title('medianBlur')
plt.show()
双边滤波
函数 cv2.bilateralFilter() 能在保持边界清晰的情况下有效的去除噪音。但是这种操作与其他滤波器相比会比较慢。我们已经知道高斯滤波器是求中心点邻近区域像素的高斯加权平均值。这种高斯滤波器只考虑像素之间的空间关系,而不会考虑像素值之间的关系(像素的相似度)。所以这种方法不会考虑一个像素是否位于边界。因此边界也会别模糊掉,而这正不是我们想要。双边滤波在同时使用空间高斯权重和灰度值相似性高斯权重。空间高斯函数确保只有邻近区域的像素对中心点有影响,灰度值相似性高斯函数确保只有与中心像素灰度值相近的才会被用来做模糊运算。所以这种方法会确保边界不会被模糊掉,因为边界处的灰度值变化比较大。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 双边滤波img = cv2.imread('./resource/opencv/image/rubberwhale1.png', cv2.IMREAD_GRAYSCALE)# 9:邻域直径,75:空间高斯函数标准差,75:灰度值相似性高斯函数标准差
dst1 = cv2.bilateralFilter(img, 9, 75, 75)plt.subplot(121), plt.imshow(img, 'gray'), plt.title('origin')
plt.subplot(122), plt.imshow(dst1, 'gray'), plt.title('bilateralFiter')
plt.show()
相关文章:

Python-OpenCV中的图像处理-图像平滑
Python-OpenCV中的图像处理-图像平滑 图像平滑平均滤波高斯模糊中值模糊双边滤波 图像平滑 使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊…...

Mongoose http server 例子
今天抽了点时间看了一下 mongoose的源码, github 地址,发现跟以前公司内部使用的不太一样,这里正好利用其 http server 例子来看一下。以前的 http message 结构体是这样的: /* HTTP message */ struct http_message {struct mg_…...
1、初识HTML
1、初识HTML 前端就是写一些基本的页面,HTML即超文本标记语言:Hyper Text Markup Language,超文本包括,文字、图片、音频、视频、动画等,HTML5,提供了一些新的元素和一些有趣的新特性,同时也建…...

线性代数(三) 线性方程组
前言 如何利用行列式,矩阵求解线性方程组。 线性方程组的相关概念 用矩阵方程表示 齐次线性方程组:Ax0;非齐次线性方程组:Axb. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的…...

Apoll 多项式规划求解
一、纵向规划 void QuarticPolynomialCurve1d::ComputeCoefficients(const float x0, const float dx0, const float ddx0, const float dx1,const float ddx1, const float p) {if (p < 0.0) {std::cout << "p should be greater than 0 at line 140." &…...

ssm亚盛汽车配件销售业绩管理统源码和论文PPT
ssm亚盛汽车配件销售业绩管理统源码和论文PPT007 开发工具:idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具:navcat,小海豚等 开发技术:java ssm tomcat8.5 研究的意义 汽车配件销售类企业近年来得到长足发展,在市场份额不断扩大同时…...

发布属于自己的 npm 包
1 创建文件夹,并创建 index.js 在文件中声明函数,使用module.exports 导出 2 npm 初始化工具包,package.json 填写包的信息(包的名字是唯一的) npm init 可在这里写包的名字,或者一路按回车,后…...
Redis主从复制和哨兵架构图,集成Spring Boot项目实战分享
目录 1. Redis 主从复制2. Redis 哨兵架构3. 集成spring boot项目案列 Redis 主从复制和哨兵架构是 Redis 集群的重要组成部分,用于提高 Redis 集群的可用性和性能。以下是 Redis 主从复制和哨兵架构的详细介绍,包括架构图和 Java 代码详解。 1. Redis …...

java中try-with-resources自动关闭io流
文章目录 java中try-with-resources自动关闭io流0 简要说明try-with-resources java中try-with-resources自动关闭io流 0 简要说明 在传统的输入输出流处理中,我们一般使用的结构如下所示,使用try - catch - finally结构捕获相关异常,最后不…...

Games101学习笔记 -光栅化
光栅化 经过MVP矩阵和视口变换后,我们就可以从相机的角度看到一个和屏幕大小一致的二维平面。 那么把这个看到的二维平面应用到我们的屏幕上的过程就是光栅化。在这儿我们需要补充一个概念-像素: 像素: 一个二位数组,数组中每个…...

Pytorch量化之Post Train Static Quantization(训练后静态量化)
使用Pytorch训练出的模型权重为fp32,部署时,为了加快速度,一般会将模型量化至int8。与fp32相比,int8模型的大小为原来的1/4, 速度为2~4倍。 Pytorch支持三种量化方式: 动态量化(Dynamic Quantization&…...
Sql奇技淫巧之EXIST实现分层过滤
在这样一个场景,我 left join 了很多张表,用这些表的不同列来过滤,看起来非常合理 但是出现的问题是 left join 其中一张或多张表出现了笛卡尔积,且无法消除 FUNCTION fun_get_xxx_helper(v_param_1 VARCHAR2,v_param_2 VARCHAR2…...
Linux下升级jdk1.8小版本
先输入java -version 查看是否安装了jdk java -version (1)如果没有返回值,直接安装新的jdk即可。 (2)如果有返回值,例如: java version "1.8.0_251" Java(TM) SE Runtime Enviro…...

【Mysql】数据库基础与基本操作
🌇个人主页:平凡的小苏 📚学习格言:命运给你一个低的起点,是想看你精彩的翻盘,而不是让你自甘堕落,脚下的路虽然难走,但我还能走,比起向阳而生,我更想尝试逆风…...
87 | Python人工智能篇 —— 机器学习算法 决策树
本教程将深入探讨决策树的基本原理,包括特征选择方法、树的构建过程以及剪枝技术,旨在帮助读者全面理解决策树算法的工作机制。同时,我们将使用 Python 和 scikit-learn 库演示如何轻松地实现和应用决策树,以及如何对结果进行可视化。无论您是初学者还是有一定机器学习经验…...

【计算机视觉】干货分享:Segmentation model PyTorch(快速搭建图像分割网络)
一、前言 如何快速搭建图像分割网络? 要手写把backbone ,手写decoder 吗? 介绍一个分割神器,分分钟搭建一个分割网络。 仓库的地址: https://github.com/qubvel/segmentation_models.pytorch该库的主要特点是&#…...
解析湖仓一体的支撑技术及实践路径
自2021年“湖仓一体”首次写入Gartner数据管理领域成熟度模型报告以来,随着企业数字化转型的不断深入,“湖仓一体”作为新型的技术受到了前所未有的关注,越来越多的企业视“湖仓一体” 为数字化转型的重要基础设施。 01 数据平台的发展历程…...

40.利用欧拉法求解微分方程组(matlab程序)
1.简述 求解微分方程的时候,如果不能将求出结果的表达式,则可以对利用数值积分对微分方程求解,获取数值解。欧拉方法是最简单的一种数值解法。前面介绍过MATLAB实例讲解欧拉法求解微分方程,今天实例讲解欧拉法求解一阶微分方程组。…...

OpenAI-Translator 实战总结
最近在极客时间学习《AI 大模型应用开发实战营》,自己一边跟着学一边开发了一个进阶版本的 OpenAI-Translator,在这里简单记录下开发过程和心得体会,供有兴趣的同学参考 功能概览 通过openai的chat API,实现一个pdf翻译器实现一个…...

【工业机器人】用于轨迹规划和执行器分析的机械手和移动机器人模型(MatlabSimulink)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇
根据 QYResearch 发布的市场报告显示,全球市场规模预计在 2031 年达到 9848 万美元,2025 - 2031 年期间年复合增长率(CAGR)为 3.7%。在竞争格局上,市场集中度较高,2024 年全球前十强厂商占据约 74.0% 的市场…...