【目标检测系列】YOLOV2解读
为更好理解YOLOv2模型,请先移步,了解YOLOv1后才能更好的理解YOLOv2所做的改进。
前情回顾:【目标检测系列】YOLOV1解读_怀逸%的博客-CSDN博客
背景
通用的目标检测应该具备快速、准确且能过识别各种各样的目标的特点。自从引入神经网络以来,检测框架已经变得越来越块和准确,但是受限于数据集规模的大小,检测方法仍被限制在小部分目标中。
目标检测数据集标注难度远大于分类任务,常见数据集的规模包含几千到数十万张图象,有几十到几百个标签,和分类任务数以百万计的图像及数十万的类别相比,远远不足。我们是希望检测能够达到目标分类的水平。
因此本文的主要工作就是在YOLOV1的基础上进行改进提出了YOLOv2。并提出了一种联合训练方法,在ImageNet的9000多个类别以及COCO的检测数据集上训练一个能够检测9000种类别的模型YOLO9000。
下面是具体的改进措施,从更好、更块、更强三个方向进行改进
更好
Batch Normalization——批量归一化
通过在YOLO的所有卷积层上添加BatchNorm,我们在mAP上的到了2%的改善。BatchNorm也有助于规范化模型,可以在舍弃dropout优化后依然不会过拟合。
Batch Normalization 原理解释
High Resolution Classifier——高分辨率分类器
16年的时候分类任务的发展速度远超于目标检测任务,因此在当时的背景下,所有最先进的目标检测方法都是使用在ImageNet上预训练的分类器作为预训练模型,然后迁移到目标检测任务中,使用目标检测数据集进行微调。但是,在最初的时候,像是AlexNet这样的分类器,都是在分辨率小于256*256的输入图像上进行运行的。
因此,在YOLOV1版本中,是先使用分辨率为224*224的分类器作为预训练模型,然后迁移到目标检测领域,使用448*448的完整分辨率进行微调。
YOLOv2对此的改进是,是先在ImageNet数据集中,以448*448的分辨率对分类网络进行微调,微调后的网络能够完成448*448分辨率图像的分类任务,最后将微调好的分类器迁移到目标检测任务中。
概括就是:YOLOv1使用224*224的分类器直接迁移到448*448的目标检测任务中。YOLOv2是先将分类器微调成448*448,然后再迁移到目标检测任务中。
最终效果mAP增加4%
Convolutional With Anchor Boxes——带有Anchor Boxes的卷积
Anchor: Anchor(先验框)就是一组预设的边界框,可以由横纵比和边框面积来定义,代表了开发人员凭借先验知识认为的待检测物体的形状大小。相当于,开发人员凭借先验知识,设计若干的Anchor,在可能的位置先将目标框出来,然后再在这些Anchor的基础上进行调整。
一个Anchor Box可以由边框的横纵比和边框的面积来定义,至于位置一般不需要定义,目标可能出现在图像的任意位置,因此Anchor Box通常是以CNN提取到的Feature Map的点为中心位置,按照预设大小生成边框。
下面来说一下YOLOv1中存在的问题,YOLOv1中每个cell存在B个框,只能预测一个类别,因此对小尺度的图像效果不佳;同时YOLOv1在训练过程中学习适应同一物体的不同形状是比较困难的,这也导致了YOLOv1在精确定位方面表现较差。之所以这样,是因为YOLOv1直接使用全连接层来预测边界框,要知道全连接层需要固定大小的输入,这也就导致了YOLOv1难以泛化到不同的尺度。
为此YOLOv2删掉了全连接层和最后一个Pooling层,使得最后卷积层可以有更高分辨率的特征;同时将网络的输入分辨率降为416*416
使用416*416而不是448*448的原因是因为YOLOv2下采样步长为32,对于416*416的图片,特征图为13*13,奇数给位置,确保在特征图正中间会存在一个中心单元格(大多数图像中,目标往往会占据图像中间位置)
同时YOLOv2的输出含义也发生变化
YOLOv1输出:S*S*(B*5+C)
YOLOv2输出:S*S*(B*(5+C)) 不再是每个cell只能预测一个类别,而是每个box能单独预测一个类别

Dimension Clusters——维度聚类(K-means聚类确定Anchor初始值)
如果想要在YOLO中使用锚框,需要解决两个问题:第一个问题,锚框的尺寸应该如何选择,总不能每次都要开发人员去手动设计吧,这与YOLO的设计初衷不符。针对这个问题具体的结局方案就是使用K-means聚类方法,自动找到较好的训练参数。
具体来说,就是针对训练集中的真实框做K-means聚类算法,自动找到符合该训练集的锚框尺寸。同时针对K-means算法做了一点改进,使其更加符合目标检测算法的需求。具体来说,如果像标准K-means算法中一样,使用欧氏距离的话,大的锚框会比小的锚框产生更多的误差,因此,希望关于距离的度量与框的大小无关,所以采用交并比替换欧氏距离,距离度量公式改为d(box, centroid) = 1 - IOU(box, centroid)
Direct location prediction——直接的位置预测
需要解决的第二个问题:模型的不稳定。基于Anchor的方法再回归锚框时,并非直接得到最终坐标,实际上真正需要学习的是目标与预设Anchor的坐标偏移量,下面是公式 预测框中心坐标= 输出的偏移量×Anchor宽高+Anchor中心坐标,偏移量才是要学习的内容。这也就导致了一个问题,因为目标可能会出现在图像中的任意位置,在随机初始化的条件下,模型需要很长时间才能稳定的预测到合理的便宜量。
解决这个问题的办法就是,将预测边界框的偏移量由全图偏移量改成对象cell的左上角的相对偏移量,将预测框的偏移范围控制在每个cell中,做到每个Anchor只负责检测周围正负一个单位内的cell。这样可以使模型训练更加稳定。
Fine-Grained Features——细粒度的特征
YOLOv2使用13*13的特征图进行检测,虽然检测大的目标够用了,但是对于较小的对象来说,更细粒度的特性可能会使得检测效果更好。
与Faster R-CNN等使用多尺度的特征图不同,YOLOv2简单的增加了一个直通层,获得前层26*26分辨率特征。

具体操作:前层26*26分辨率特征图拆分成4块,沿通道拼接到13*13的特征图中
Multi-Scale Training——多尺度训练
YOLOv1固定448*448的分辨率作为输入,上面加入锚框操作后,我们将分辨率改成了416*416操作。在实际的应用中,我们需要先将图片放缩到416*416的固定大小,才可以保证网络正确检测到目标。但是,我们希望YOLOv2能够鲁棒的运行在不同尺寸的图像中,不要对数据进行放缩处理。
解决方案是利用YOLOv2只使用了卷积和池化层的特点,这意味着输入图像的大小并不会影响模型的正常运行。因此具体做法就是:网络训练过程中每隔10个epoch就随机一个新的尺寸的图像作为输入训练,这样整个训练流程下来,模型见到过各种尺寸的输入,自然能在不同尺寸在正常执行检测任务。由于模型的下采样采用了32倍,那么训练模型所用的图像分辨率就从{320,352,。。。,608}等中选择。
更快
除了检测更加准确之外,我们还希望能够以更快的速度运行,具体方法在本文中新提出了一个Darknet-19的网络
在YOLOv1中用的是GooLeNet(4个卷积层和2个全连接层),YOLOv2改用Darknet-19(19个卷积层和5个maxpooling层)

在YOLOv1中最后使用全连接层将7*7*1024的特征图变成7*7*30的特征图,但是这种变化完全可以通过卷积实现,从而大幅度减少参数量。
更强
作者提出了一种对分类和检测数据进行联合训练的机制。在此之前,先介绍下YOLOv2和YOLO9000的区别
YOLOv2:是在YOLOv1的基础上进行改进,特点是“更好、更快、更强”
YOLO9000:主要检测网络也是YOLOv2,同时使用联合优化技术进行训练,最终使得YOLO9000的网络结构允许实时的检测超过9000种物体分类,进一步缩小了检测数据集和分类数据集之间的大小代沟。
具体方法:
- 输入的图片若为目标检测标签的,则在模型中反向传播目标检测的损失函数
- 输入的图片若为分类标签的,则反向传播分类的损失函数
这样做的原理是因为虽然目标检测的数据集规模相对较小,但其实已经能够覆盖大多数物体的形状,例如:猫科动物中,狮子、老虎、豹子等体型类似,检测模型能够检测出这些物体所在的位置,缺乏的只是进一步分类的能力。而分类数据集要丰富得多,关于类别的标准要远远超过检测数据集。
综上,检测数据集可以为绝大多数物体提供位置信息,但缺少细分类的能力;分类数据集为更多物体提供最准确的类别信息,但缺少位置信息,二者结合则得到了YOLO9000
论文链接:https://arxiv.org/abs/1612.08242
源码地址:mirrors / alexeyab / darknet · GitCode
参考内容:【YOLO系列】YOLOv2论文超详细解读(翻译 +学习笔记)_路人贾'ω'的博客-CSDN博客
相关文章:
【目标检测系列】YOLOV2解读
为更好理解YOLOv2模型,请先移步,了解YOLOv1后才能更好的理解YOLOv2所做的改进。 前情回顾:【目标检测系列】YOLOV1解读_怀逸%的博客-CSDN博客 背景 通用的目标检测应该具备快速、准确且能过识别各种各样的目标的特点。自从引入神经网络以来&a…...
【深入浅出程序设计竞赛(基础篇)第一章 算法小白从0开始】
深入浅出程序设计竞赛(基础篇)第一章 算法小白从0开始 第一章 例题例1-1例1-2例1-3例1-4例1-5例1-6例1-7例1-8例1-9例1-10例1-11 第一章 课后习题1-11-21-31-4 第一章 例题 例1-1 #include<iostream> using namespace std;int main(){cout <&…...
openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句
文章目录 openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句36.1 语法格式36.2 参数说明36.3 示例 openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句 清理表数据,TRUNCATE TABLE用于删除表的数据,但不删除表结构。也可以…...
ChatGPT生成文本检测器算法挑战大赛
ChatGPT生成文本检测器算法挑战大 比赛链接:2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn) 1、数据加载和预处理 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.linea…...
O2OA开发平台实施入门指南
O2OA(翱途)开发平台,是一款适用于协同办公系统开发与实施的基础平台,说到底,它也是一款快速开发平台。开发者可以基于平台提供的能力完成门户、流程、信息相关的业务功能开发。 既然定位为开发平台,那么开…...
服装行业多模态算法个性化产品定制方案 | 京东云技术团队
一、项目背景 AI赋能服装设计师,设计好看、好穿、好卖的服装 传统服装行业痛点 • 设计师无法准确捕捉市场趋势,抓住中国潮流 • 上新周期长,高库存滞销风险大 • 基本款居多,难以满足消费者个性化需求 解决方案 • GPT数据…...
MySQL表空间结构与页、区、段的定义
文章目录 一、概念引入1、页2、区3、段 二、页的结构1、File Header2、FIle Trailer 三、区的结构1、分类2、XDES Entry3、XDES Entry链表 四、段的结构五、独立表空间1、FSP_HDR页2、XDES页3、IBUF_BITMAP页4、INODE页5、INDEX页 六、系统表空间 一、概念引入 1、页 InnoDB是…...
RaabitMQ(三) - RabbitMQ队列类型、死信消息与死信队列、懒队列、集群模式、MQ常见消息问题
RabbitMQ队列类型 Classic经典队列 这是RabbitMQ最为经典的队列类型。在单机环境中,拥有比较高的消息可靠性。 经典队列可以选择是否持久化(Durability)以及是否自动删除(Auto delete)两个属性。 Durability有两个选项,Durable和Transient。 Durable表…...
Unity3D GPU Selector/Picker
Unity3D GPU Selector/Picker 一、概述 1.动机 Unity3D中通常情况下使用物理系统进行物体点击选择的基础,对于含大量对象的场景,添加Collider组件会增加内容占用,因此使用基于GPU的点击选择方案 2.实现思路 对于场景的每个物体,…...
灰度非线性变换之c++实现(qt + 不调包)
本章介绍灰度非线性变换,具体内容包括:对数变换、幂次变换、指数变换。他们的共同特点是使用非线性变换关系式进行图像变换。 1.灰度对数变换 变换公式:y a log(1x) / b,其中,a控制曲线的垂直移量;b为正…...
轻量级Web框架Flask
Flask-SQLAlchemy MySQL是免费开源软件,大家可以自行搜索其官网(https://www.MySQL.com/downloads/) 测试MySQL是否安装成功 在所有程序中,找到MySQL→MySQL Server 5.6下面的命令行工具,然后单击输入密码后回车&am…...
【gridsample】地平线如何支持gridsample算子
文章目录 1. grid_sample算子功能解析1.1 理论介绍1.2 代码分析1.2.1 x,y取值范围[-1,1]1.2.2 x,y取值范围超出[-1,1] 2. 使用grid_sample算子构建一个网络3. 走PTQ进行模型转换与编译 实操以J5 OE1.1.60对应的docker为例 1. grid_sample算子功能解析 该段主要参考:…...
JPA实现存储实体类型信息
本文已收录于专栏 《Java》 目录 背景介绍概念说明DiscriminatorValue 注解:DiscriminatorColumn 注解:Inheritance(strategy InheritanceType.SINGLE_TABLE) 注解: 实现方式父类子类执行效果 总结提升 背景介绍 在我们项目开发的过程中经常…...
阿里云快速部署开发环境 (Apache + Mysql8.0+Redis7.0.x)
本文章的内容截取于云服务器管理控制台提供的安装步骤,再整合前人思路而成,文章末端会提供原文连接 ApacheMysql 8.0部署MySQL数据库(Linux)步骤一:安装MySQL步骤二:配置MySQL步骤三:远程访问My…...
语音秘书:让录音转文字识别软件成为你的智能工作助手
每当在需要写文章的深夜,我的思绪经常跟不上我的笔,即便是说出来用录音机录下,再书写出来,也需要耗费大量时间。这个困扰了我很久的问题终于有了解决的办法,那就是录音转文字软件。它像个语言魔术师,将我所…...
【腾讯云 Cloud Studio 实战训练营】用于编写、运行和调试代码的云 IDE泰裤辣
文章目录 一、引言✉️二、什么是腾讯云 Cloud Studio🔍三、Cloud Studio优点和功能🌈四、Cloud Studio初体验(注册篇)🎆五、Cloud Studio实战演练(实战篇)🔬1. 初始化工作空间2. 安…...
[C#] 简单的俄罗斯方块实现
一个控制台俄罗斯方块游戏的简单实现. 已在 github.com/SlimeNull/Tetris 开源. 思路 很简单, 一个二维数组存储当前游戏的方块地图, 用 bool 即可, true 表示当前块被填充, false 表示没有. 然后, 抽一个 “形状” 类, 形状表示当前玩家正在操作的一个形状, 例如方块, 直线…...
postman官网下载安装登录详细教程
目录 一、介绍 二、官网下载 三、安装 四、注册登录postman账号(不注册也可以) postman注册登录和不注册登录的使用区别 五、关于汉化的说明 一、介绍 简单来说:是一款前后端都用来测试接口的工具。 展开来说:Postman 是一个…...
(贪心) 剑指 Offer 14- I. 剪绳子 ——【Leetcode每日一题】
❓剑指 Offer 14- I. 剪绳子 难度:中等 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n > 1 并且 m > 1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m…...
如何将Linux上的cpolar内网穿透设置成 - > 开机自启动
如何将Linux上的cpolar内网穿透设置成 - > 开机自启动 文章目录 如何将Linux上的cpolar内网穿透设置成 - > 开机自启动前言一、进入命令行模式二、输入token码三、输入内网穿透命令 前言 我们将cpolar安装到了Ubuntu系统上,并通过web-UI界面对cpolar的功能有…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...
在Zenodo下载文件 用到googlecolab googledrive
方法:Figshare/Zenodo上的数据/文件下载不下来?尝试利用Google Colab :https://zhuanlan.zhihu.com/p/1898503078782674027 参考: 通过Colab&谷歌云下载Figshare数据,超级实用!!࿰…...
