ChatGPT生成文本检测器算法挑战大赛
ChatGPT生成文本检测器算法挑战大
比赛链接:2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn)
1、数据加载和预处理
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_predict
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV# 加载数据
train_data = pd.read_csv('ChatGPT生成文本检测器公开数据-更新/train.csv')
test_data = pd.read_csv('ChatGPT生成文本检测器公开数据-更新/test.csv')# 数据预处理
train_data['content'] = train_data['content'].apply(lambda x: x[1:-1])
test_data['content'] = test_data['content'].apply(lambda x: x[1:-1])
2、训练集和验证集划分
# 划分训练集和验证集
train_text, valid_text, train_label, valid_label = train_test_split(train_data['content'], train_data['label'], test_size=0.2, random_state=42
)
3、Pipeline构建
使用Pipeline构建了一个包含TF-IDF向量化和逻辑回归模型的流水线。
# 使用Pipeline进行流水线构建
pipeline = Pipeline([('tfidf', TfidfVectorizer(token_pattern=r'\w{1,}', max_features=5000, ngram_range=(1, 2))),('model', LogisticRegression(max_iter=1000))
])
4、网格搜索参数
定义了要进行网格搜索的参数范围,其中包括TF-IDF的最大特征数和逻辑回归的正则化参数C。
# 网格搜索参数
param_grid = {'tfidf__max_features': [2000, 5000],'model__C': [0.1, 1, 10]
}
5、网格搜索交叉验证
使用GridSearchCV在训练集上执行网格搜索交叉验证,寻找最佳参数组合。
# 在训练集上进行网格搜索交叉验证
grid_search = GridSearchCV(pipeline, param_grid, cv=3, scoring='f1_macro')
grid_search.fit(train_text, train_label)
6、最佳模型获取
从网格搜索结果中选择出最佳模型。
# 最佳模型
best_model = grid_search.best_estimator_
7、预测和评估
使用最佳模型预测验证集的标签,并通过classification_report打印验证集的分类报告。
# 打印最佳参数
print("Best Parameters:", grid_search.best_params_)# 预测验证集
valid_predictions = best_model.predict(valid_text)# 打印验证集的分类报告
print("Validation Set Classification Report:")
print(classification_report(valid_label, valid_predictions))
8、测试集预测和保存
使用最佳模型对测试集进行预测,并将预测结果保存到CSV文件中。
# 使用最佳模型进行测试集预测
test_predictions = best_model.predict(test_data['content'])
test_data['label'] = test_predictions# 保存预测结果
test_data[['name', 'label']].to_csv('tfidf_predictions.csv', index=None)
相关文章:
ChatGPT生成文本检测器算法挑战大赛
ChatGPT生成文本检测器算法挑战大 比赛链接:2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn) 1、数据加载和预处理 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.linea…...
O2OA开发平台实施入门指南
O2OA(翱途)开发平台,是一款适用于协同办公系统开发与实施的基础平台,说到底,它也是一款快速开发平台。开发者可以基于平台提供的能力完成门户、流程、信息相关的业务功能开发。 既然定位为开发平台,那么开…...
服装行业多模态算法个性化产品定制方案 | 京东云技术团队
一、项目背景 AI赋能服装设计师,设计好看、好穿、好卖的服装 传统服装行业痛点 • 设计师无法准确捕捉市场趋势,抓住中国潮流 • 上新周期长,高库存滞销风险大 • 基本款居多,难以满足消费者个性化需求 解决方案 • GPT数据…...
MySQL表空间结构与页、区、段的定义
文章目录 一、概念引入1、页2、区3、段 二、页的结构1、File Header2、FIle Trailer 三、区的结构1、分类2、XDES Entry3、XDES Entry链表 四、段的结构五、独立表空间1、FSP_HDR页2、XDES页3、IBUF_BITMAP页4、INODE页5、INDEX页 六、系统表空间 一、概念引入 1、页 InnoDB是…...
RaabitMQ(三) - RabbitMQ队列类型、死信消息与死信队列、懒队列、集群模式、MQ常见消息问题
RabbitMQ队列类型 Classic经典队列 这是RabbitMQ最为经典的队列类型。在单机环境中,拥有比较高的消息可靠性。 经典队列可以选择是否持久化(Durability)以及是否自动删除(Auto delete)两个属性。 Durability有两个选项,Durable和Transient。 Durable表…...
Unity3D GPU Selector/Picker
Unity3D GPU Selector/Picker 一、概述 1.动机 Unity3D中通常情况下使用物理系统进行物体点击选择的基础,对于含大量对象的场景,添加Collider组件会增加内容占用,因此使用基于GPU的点击选择方案 2.实现思路 对于场景的每个物体,…...
灰度非线性变换之c++实现(qt + 不调包)
本章介绍灰度非线性变换,具体内容包括:对数变换、幂次变换、指数变换。他们的共同特点是使用非线性变换关系式进行图像变换。 1.灰度对数变换 变换公式:y a log(1x) / b,其中,a控制曲线的垂直移量;b为正…...
轻量级Web框架Flask
Flask-SQLAlchemy MySQL是免费开源软件,大家可以自行搜索其官网(https://www.MySQL.com/downloads/) 测试MySQL是否安装成功 在所有程序中,找到MySQL→MySQL Server 5.6下面的命令行工具,然后单击输入密码后回车&am…...
【gridsample】地平线如何支持gridsample算子
文章目录 1. grid_sample算子功能解析1.1 理论介绍1.2 代码分析1.2.1 x,y取值范围[-1,1]1.2.2 x,y取值范围超出[-1,1] 2. 使用grid_sample算子构建一个网络3. 走PTQ进行模型转换与编译 实操以J5 OE1.1.60对应的docker为例 1. grid_sample算子功能解析 该段主要参考:…...
JPA实现存储实体类型信息
本文已收录于专栏 《Java》 目录 背景介绍概念说明DiscriminatorValue 注解:DiscriminatorColumn 注解:Inheritance(strategy InheritanceType.SINGLE_TABLE) 注解: 实现方式父类子类执行效果 总结提升 背景介绍 在我们项目开发的过程中经常…...
阿里云快速部署开发环境 (Apache + Mysql8.0+Redis7.0.x)
本文章的内容截取于云服务器管理控制台提供的安装步骤,再整合前人思路而成,文章末端会提供原文连接 ApacheMysql 8.0部署MySQL数据库(Linux)步骤一:安装MySQL步骤二:配置MySQL步骤三:远程访问My…...
语音秘书:让录音转文字识别软件成为你的智能工作助手
每当在需要写文章的深夜,我的思绪经常跟不上我的笔,即便是说出来用录音机录下,再书写出来,也需要耗费大量时间。这个困扰了我很久的问题终于有了解决的办法,那就是录音转文字软件。它像个语言魔术师,将我所…...
【腾讯云 Cloud Studio 实战训练营】用于编写、运行和调试代码的云 IDE泰裤辣
文章目录 一、引言✉️二、什么是腾讯云 Cloud Studio🔍三、Cloud Studio优点和功能🌈四、Cloud Studio初体验(注册篇)🎆五、Cloud Studio实战演练(实战篇)🔬1. 初始化工作空间2. 安…...
[C#] 简单的俄罗斯方块实现
一个控制台俄罗斯方块游戏的简单实现. 已在 github.com/SlimeNull/Tetris 开源. 思路 很简单, 一个二维数组存储当前游戏的方块地图, 用 bool 即可, true 表示当前块被填充, false 表示没有. 然后, 抽一个 “形状” 类, 形状表示当前玩家正在操作的一个形状, 例如方块, 直线…...
postman官网下载安装登录详细教程
目录 一、介绍 二、官网下载 三、安装 四、注册登录postman账号(不注册也可以) postman注册登录和不注册登录的使用区别 五、关于汉化的说明 一、介绍 简单来说:是一款前后端都用来测试接口的工具。 展开来说:Postman 是一个…...
(贪心) 剑指 Offer 14- I. 剪绳子 ——【Leetcode每日一题】
❓剑指 Offer 14- I. 剪绳子 难度:中等 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n > 1 并且 m > 1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m…...
如何将Linux上的cpolar内网穿透设置成 - > 开机自启动
如何将Linux上的cpolar内网穿透设置成 - > 开机自启动 文章目录 如何将Linux上的cpolar内网穿透设置成 - > 开机自启动前言一、进入命令行模式二、输入token码三、输入内网穿透命令 前言 我们将cpolar安装到了Ubuntu系统上,并通过web-UI界面对cpolar的功能有…...
50.两数之和(力扣)
目录 问题描述 核心代码解决 代码思想 时间复杂度和空间复杂度 问题描述 给定一个整数数组 和一个整数目标值 ,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。numstarget 你可以假设每种输入只会对应一个答案。但是&am…...
k8s基础
k8s基础 文章目录 k8s基础一、k8s组件二、k8s组件作用1.master节点2.worker node节点 三、K8S创建Pod的工作流程?四、K8S资源对象1.Pod2.Pod控制器3.service && ingress 五、K8S资源配置信息六、K8s部署1.K8S二进制部署2.K8S kubeadm搭建 七、K8s网络八、K8…...
【自然语言处理】大模型高效微调:PEFT 使用案例
文章目录 一、PEFT介绍二、PEFT 使用2.1 PeftConfig2.2 PeftModel2.3 保存和加载模型 三、PEFT支持任务3.1 Models support matrix3.1.1 Causal Language Modeling3.1.2 Conditional Generation3.1.3 Sequence Classification3.1.4 Token Classification3.1.5 Text-to-Image Ge…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...
yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
文件上传漏洞防御全攻略
要全面防范文件上传漏洞,需构建多层防御体系,结合技术验证、存储隔离与权限控制: 🔒 一、基础防护层 前端校验(仅辅助) 通过JavaScript限制文件后缀名(白名单)和大小,提…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
