当前位置: 首页 > news >正文

ChatGPT生成文本检测器算法挑战大赛

ChatGPT生成文本检测器算法挑战大

比赛链接:2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn)

1、数据加载和预处理

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_predict
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV# 加载数据
train_data = pd.read_csv('ChatGPT生成文本检测器公开数据-更新/train.csv')
test_data = pd.read_csv('ChatGPT生成文本检测器公开数据-更新/test.csv')# 数据预处理
train_data['content'] = train_data['content'].apply(lambda x: x[1:-1])
test_data['content'] = test_data['content'].apply(lambda x: x[1:-1])

2、训练集和验证集划分

# 划分训练集和验证集
train_text, valid_text, train_label, valid_label = train_test_split(train_data['content'], train_data['label'], test_size=0.2, random_state=42
)

3、Pipeline构建

使用Pipeline构建了一个包含TF-IDF向量化和逻辑回归模型的流水线。

# 使用Pipeline进行流水线构建
pipeline = Pipeline([('tfidf', TfidfVectorizer(token_pattern=r'\w{1,}', max_features=5000, ngram_range=(1, 2))),('model', LogisticRegression(max_iter=1000))
])

4、网格搜索参数

定义了要进行网格搜索的参数范围,其中包括TF-IDF的最大特征数和逻辑回归的正则化参数C。

# 网格搜索参数
param_grid = {'tfidf__max_features': [2000, 5000],'model__C': [0.1, 1, 10]
}

5、网格搜索交叉验证

使用GridSearchCV在训练集上执行网格搜索交叉验证,寻找最佳参数组合。

# 在训练集上进行网格搜索交叉验证
grid_search = GridSearchCV(pipeline, param_grid, cv=3, scoring='f1_macro')
grid_search.fit(train_text, train_label)

6、最佳模型获取

从网格搜索结果中选择出最佳模型。

# 最佳模型
best_model = grid_search.best_estimator_

7、预测和评估

使用最佳模型预测验证集的标签,并通过classification_report打印验证集的分类报告。

# 打印最佳参数
print("Best Parameters:", grid_search.best_params_)# 预测验证集
valid_predictions = best_model.predict(valid_text)# 打印验证集的分类报告
print("Validation Set Classification Report:")
print(classification_report(valid_label, valid_predictions))

8、测试集预测和保存

使用最佳模型对测试集进行预测,并将预测结果保存到CSV文件中。

# 使用最佳模型进行测试集预测
test_predictions = best_model.predict(test_data['content'])
test_data['label'] = test_predictions# 保存预测结果
test_data[['name', 'label']].to_csv('tfidf_predictions.csv', index=None)

相关文章:

ChatGPT生成文本检测器算法挑战大赛

ChatGPT生成文本检测器算法挑战大 比赛链接:2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn) 1、数据加载和预处理 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.linea…...

O2OA开发平台实施入门指南

O2OA(翱途)开发平台,是一款适用于协同办公系统开发与实施的基础平台,说到底,它也是一款快速开发平台。开发者可以基于平台提供的能力完成门户、流程、信息相关的业务功能开发。 既然定位为开发平台,那么开…...

服装行业多模态算法个性化产品定制方案 | 京东云技术团队

一、项目背景 AI赋能服装设计师,设计好看、好穿、好卖的服装 传统服装行业痛点 • 设计师无法准确捕捉市场趋势,抓住中国潮流 • 上新周期长,高库存滞销风险大 • 基本款居多,难以满足消费者个性化需求 解决方案 • GPT数据…...

MySQL表空间结构与页、区、段的定义

文章目录 一、概念引入1、页2、区3、段 二、页的结构1、File Header2、FIle Trailer 三、区的结构1、分类2、XDES Entry3、XDES Entry链表 四、段的结构五、独立表空间1、FSP_HDR页2、XDES页3、IBUF_BITMAP页4、INODE页5、INDEX页 六、系统表空间 一、概念引入 1、页 InnoDB是…...

RaabitMQ(三) - RabbitMQ队列类型、死信消息与死信队列、懒队列、集群模式、MQ常见消息问题

RabbitMQ队列类型 Classic经典队列 这是RabbitMQ最为经典的队列类型。在单机环境中,拥有比较高的消息可靠性。 经典队列可以选择是否持久化(Durability)以及是否自动删除(Auto delete)两个属性。 Durability有两个选项,Durable和Transient。 Durable表…...

Unity3D GPU Selector/Picker

Unity3D GPU Selector/Picker 一、概述 1.动机 Unity3D中通常情况下使用物理系统进行物体点击选择的基础,对于含大量对象的场景,添加Collider组件会增加内容占用,因此使用基于GPU的点击选择方案 2.实现思路 对于场景的每个物体,…...

灰度非线性变换之c++实现(qt + 不调包)

本章介绍灰度非线性变换,具体内容包括:对数变换、幂次变换、指数变换。他们的共同特点是使用非线性变换关系式进行图像变换。 1.灰度对数变换 变换公式:y a log(1x) / b,其中,a控制曲线的垂直移量;b为正…...

轻量级Web框架Flask

Flask-SQLAlchemy MySQL是免费开源软件,大家可以自行搜索其官网(https://www.MySQL.com/downloads/) 测试MySQL是否安装成功 在所有程序中,找到MySQL→MySQL Server 5.6下面的命令行工具,然后单击输入密码后回车&am…...

【gridsample】地平线如何支持gridsample算子

文章目录 1. grid_sample算子功能解析1.1 理论介绍1.2 代码分析1.2.1 x,y取值范围[-1,1]1.2.2 x,y取值范围超出[-1,1] 2. 使用grid_sample算子构建一个网络3. 走PTQ进行模型转换与编译 实操以J5 OE1.1.60对应的docker为例 1. grid_sample算子功能解析 该段主要参考:…...

JPA实现存储实体类型信息

本文已收录于专栏 《Java》 目录 背景介绍概念说明DiscriminatorValue 注解:DiscriminatorColumn 注解:Inheritance(strategy InheritanceType.SINGLE_TABLE) 注解: 实现方式父类子类执行效果 总结提升 背景介绍 在我们项目开发的过程中经常…...

阿里云快速部署开发环境 (Apache + Mysql8.0+Redis7.0.x)

本文章的内容截取于云服务器管理控制台提供的安装步骤,再整合前人思路而成,文章末端会提供原文连接 ApacheMysql 8.0部署MySQL数据库(Linux)步骤一:安装MySQL步骤二:配置MySQL步骤三:远程访问My…...

语音秘书:让录音转文字识别软件成为你的智能工作助手

每当在需要写文章的深夜,我的思绪经常跟不上我的笔,即便是说出来用录音机录下,再书写出来,也需要耗费大量时间。这个困扰了我很久的问题终于有了解决的办法,那就是录音转文字软件。它像个语言魔术师,将我所…...

【腾讯云 Cloud Studio 实战训练营】用于编写、运行和调试代码的云 IDE泰裤辣

文章目录 一、引言✉️二、什么是腾讯云 Cloud Studio🔍三、Cloud Studio优点和功能🌈四、Cloud Studio初体验(注册篇)🎆五、Cloud Studio实战演练(实战篇)🔬1. 初始化工作空间2. 安…...

[C#] 简单的俄罗斯方块实现

一个控制台俄罗斯方块游戏的简单实现. 已在 github.com/SlimeNull/Tetris 开源. 思路 很简单, 一个二维数组存储当前游戏的方块地图, 用 bool 即可, true 表示当前块被填充, false 表示没有. 然后, 抽一个 “形状” 类, 形状表示当前玩家正在操作的一个形状, 例如方块, 直线…...

postman官网下载安装登录详细教程

目录 一、介绍 二、官网下载 三、安装 四、注册登录postman账号(不注册也可以) postman注册登录和不注册登录的使用区别 五、关于汉化的说明 一、介绍 简单来说:是一款前后端都用来测试接口的工具。 展开来说:Postman 是一个…...

(贪心) 剑指 Offer 14- I. 剪绳子 ——【Leetcode每日一题】

❓剑指 Offer 14- I. 剪绳子 难度:中等 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n > 1 并且 m > 1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m…...

如何将Linux上的cpolar内网穿透设置成 - > 开机自启动

如何将Linux上的cpolar内网穿透设置成 - > 开机自启动 文章目录 如何将Linux上的cpolar内网穿透设置成 - > 开机自启动前言一、进入命令行模式二、输入token码三、输入内网穿透命令 前言 我们将cpolar安装到了Ubuntu系统上,并通过web-UI界面对cpolar的功能有…...

50.两数之和(力扣)

目录 问题描述 核心代码解决 代码思想 时间复杂度和空间复杂度 问题描述 给定一个整数数组 和一个整数目标值 ,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。numstarget 你可以假设每种输入只会对应一个答案。但是&am…...

k8s基础

k8s基础 文章目录 k8s基础一、k8s组件二、k8s组件作用1.master节点2.worker node节点 三、K8S创建Pod的工作流程?四、K8S资源对象1.Pod2.Pod控制器3.service && ingress 五、K8S资源配置信息六、K8s部署1.K8S二进制部署2.K8S kubeadm搭建 七、K8s网络八、K8…...

【自然语言处理】大模型高效微调:PEFT 使用案例

文章目录 一、PEFT介绍二、PEFT 使用2.1 PeftConfig2.2 PeftModel2.3 保存和加载模型 三、PEFT支持任务3.1 Models support matrix3.1.1 Causal Language Modeling3.1.2 Conditional Generation3.1.3 Sequence Classification3.1.4 Token Classification3.1.5 Text-to-Image Ge…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: ​onCreate()​​ ​调用时机​:Activity 首次创建时调用。​…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...