当前位置: 首页 > news >正文

ChatGPT生成文本检测器算法挑战大赛

ChatGPT生成文本检测器算法挑战大

比赛链接:2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn)

1、数据加载和预处理

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_predict
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV# 加载数据
train_data = pd.read_csv('ChatGPT生成文本检测器公开数据-更新/train.csv')
test_data = pd.read_csv('ChatGPT生成文本检测器公开数据-更新/test.csv')# 数据预处理
train_data['content'] = train_data['content'].apply(lambda x: x[1:-1])
test_data['content'] = test_data['content'].apply(lambda x: x[1:-1])

2、训练集和验证集划分

# 划分训练集和验证集
train_text, valid_text, train_label, valid_label = train_test_split(train_data['content'], train_data['label'], test_size=0.2, random_state=42
)

3、Pipeline构建

使用Pipeline构建了一个包含TF-IDF向量化和逻辑回归模型的流水线。

# 使用Pipeline进行流水线构建
pipeline = Pipeline([('tfidf', TfidfVectorizer(token_pattern=r'\w{1,}', max_features=5000, ngram_range=(1, 2))),('model', LogisticRegression(max_iter=1000))
])

4、网格搜索参数

定义了要进行网格搜索的参数范围,其中包括TF-IDF的最大特征数和逻辑回归的正则化参数C。

# 网格搜索参数
param_grid = {'tfidf__max_features': [2000, 5000],'model__C': [0.1, 1, 10]
}

5、网格搜索交叉验证

使用GridSearchCV在训练集上执行网格搜索交叉验证,寻找最佳参数组合。

# 在训练集上进行网格搜索交叉验证
grid_search = GridSearchCV(pipeline, param_grid, cv=3, scoring='f1_macro')
grid_search.fit(train_text, train_label)

6、最佳模型获取

从网格搜索结果中选择出最佳模型。

# 最佳模型
best_model = grid_search.best_estimator_

7、预测和评估

使用最佳模型预测验证集的标签,并通过classification_report打印验证集的分类报告。

# 打印最佳参数
print("Best Parameters:", grid_search.best_params_)# 预测验证集
valid_predictions = best_model.predict(valid_text)# 打印验证集的分类报告
print("Validation Set Classification Report:")
print(classification_report(valid_label, valid_predictions))

8、测试集预测和保存

使用最佳模型对测试集进行预测,并将预测结果保存到CSV文件中。

# 使用最佳模型进行测试集预测
test_predictions = best_model.predict(test_data['content'])
test_data['label'] = test_predictions# 保存预测结果
test_data[['name', 'label']].to_csv('tfidf_predictions.csv', index=None)

相关文章:

ChatGPT生成文本检测器算法挑战大赛

ChatGPT生成文本检测器算法挑战大 比赛链接:2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn) 1、数据加载和预处理 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.linea…...

O2OA开发平台实施入门指南

O2OA(翱途)开发平台,是一款适用于协同办公系统开发与实施的基础平台,说到底,它也是一款快速开发平台。开发者可以基于平台提供的能力完成门户、流程、信息相关的业务功能开发。 既然定位为开发平台,那么开…...

服装行业多模态算法个性化产品定制方案 | 京东云技术团队

一、项目背景 AI赋能服装设计师,设计好看、好穿、好卖的服装 传统服装行业痛点 • 设计师无法准确捕捉市场趋势,抓住中国潮流 • 上新周期长,高库存滞销风险大 • 基本款居多,难以满足消费者个性化需求 解决方案 • GPT数据…...

MySQL表空间结构与页、区、段的定义

文章目录 一、概念引入1、页2、区3、段 二、页的结构1、File Header2、FIle Trailer 三、区的结构1、分类2、XDES Entry3、XDES Entry链表 四、段的结构五、独立表空间1、FSP_HDR页2、XDES页3、IBUF_BITMAP页4、INODE页5、INDEX页 六、系统表空间 一、概念引入 1、页 InnoDB是…...

RaabitMQ(三) - RabbitMQ队列类型、死信消息与死信队列、懒队列、集群模式、MQ常见消息问题

RabbitMQ队列类型 Classic经典队列 这是RabbitMQ最为经典的队列类型。在单机环境中,拥有比较高的消息可靠性。 经典队列可以选择是否持久化(Durability)以及是否自动删除(Auto delete)两个属性。 Durability有两个选项,Durable和Transient。 Durable表…...

Unity3D GPU Selector/Picker

Unity3D GPU Selector/Picker 一、概述 1.动机 Unity3D中通常情况下使用物理系统进行物体点击选择的基础,对于含大量对象的场景,添加Collider组件会增加内容占用,因此使用基于GPU的点击选择方案 2.实现思路 对于场景的每个物体,…...

灰度非线性变换之c++实现(qt + 不调包)

本章介绍灰度非线性变换,具体内容包括:对数变换、幂次变换、指数变换。他们的共同特点是使用非线性变换关系式进行图像变换。 1.灰度对数变换 变换公式:y a log(1x) / b,其中,a控制曲线的垂直移量;b为正…...

轻量级Web框架Flask

Flask-SQLAlchemy MySQL是免费开源软件,大家可以自行搜索其官网(https://www.MySQL.com/downloads/) 测试MySQL是否安装成功 在所有程序中,找到MySQL→MySQL Server 5.6下面的命令行工具,然后单击输入密码后回车&am…...

【gridsample】地平线如何支持gridsample算子

文章目录 1. grid_sample算子功能解析1.1 理论介绍1.2 代码分析1.2.1 x,y取值范围[-1,1]1.2.2 x,y取值范围超出[-1,1] 2. 使用grid_sample算子构建一个网络3. 走PTQ进行模型转换与编译 实操以J5 OE1.1.60对应的docker为例 1. grid_sample算子功能解析 该段主要参考:…...

JPA实现存储实体类型信息

本文已收录于专栏 《Java》 目录 背景介绍概念说明DiscriminatorValue 注解:DiscriminatorColumn 注解:Inheritance(strategy InheritanceType.SINGLE_TABLE) 注解: 实现方式父类子类执行效果 总结提升 背景介绍 在我们项目开发的过程中经常…...

阿里云快速部署开发环境 (Apache + Mysql8.0+Redis7.0.x)

本文章的内容截取于云服务器管理控制台提供的安装步骤,再整合前人思路而成,文章末端会提供原文连接 ApacheMysql 8.0部署MySQL数据库(Linux)步骤一:安装MySQL步骤二:配置MySQL步骤三:远程访问My…...

语音秘书:让录音转文字识别软件成为你的智能工作助手

每当在需要写文章的深夜,我的思绪经常跟不上我的笔,即便是说出来用录音机录下,再书写出来,也需要耗费大量时间。这个困扰了我很久的问题终于有了解决的办法,那就是录音转文字软件。它像个语言魔术师,将我所…...

【腾讯云 Cloud Studio 实战训练营】用于编写、运行和调试代码的云 IDE泰裤辣

文章目录 一、引言✉️二、什么是腾讯云 Cloud Studio🔍三、Cloud Studio优点和功能🌈四、Cloud Studio初体验(注册篇)🎆五、Cloud Studio实战演练(实战篇)🔬1. 初始化工作空间2. 安…...

[C#] 简单的俄罗斯方块实现

一个控制台俄罗斯方块游戏的简单实现. 已在 github.com/SlimeNull/Tetris 开源. 思路 很简单, 一个二维数组存储当前游戏的方块地图, 用 bool 即可, true 表示当前块被填充, false 表示没有. 然后, 抽一个 “形状” 类, 形状表示当前玩家正在操作的一个形状, 例如方块, 直线…...

postman官网下载安装登录详细教程

目录 一、介绍 二、官网下载 三、安装 四、注册登录postman账号(不注册也可以) postman注册登录和不注册登录的使用区别 五、关于汉化的说明 一、介绍 简单来说:是一款前后端都用来测试接口的工具。 展开来说:Postman 是一个…...

(贪心) 剑指 Offer 14- I. 剪绳子 ——【Leetcode每日一题】

❓剑指 Offer 14- I. 剪绳子 难度:中等 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n > 1 并且 m > 1),每段绳子的长度记为 k[0],k[1]...k[m-1] 。请问 k[0]*k[1]*...*k[m…...

如何将Linux上的cpolar内网穿透设置成 - > 开机自启动

如何将Linux上的cpolar内网穿透设置成 - > 开机自启动 文章目录 如何将Linux上的cpolar内网穿透设置成 - > 开机自启动前言一、进入命令行模式二、输入token码三、输入内网穿透命令 前言 我们将cpolar安装到了Ubuntu系统上,并通过web-UI界面对cpolar的功能有…...

50.两数之和(力扣)

目录 问题描述 核心代码解决 代码思想 时间复杂度和空间复杂度 问题描述 给定一个整数数组 和一个整数目标值 ,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。numstarget 你可以假设每种输入只会对应一个答案。但是&am…...

k8s基础

k8s基础 文章目录 k8s基础一、k8s组件二、k8s组件作用1.master节点2.worker node节点 三、K8S创建Pod的工作流程?四、K8S资源对象1.Pod2.Pod控制器3.service && ingress 五、K8S资源配置信息六、K8s部署1.K8S二进制部署2.K8S kubeadm搭建 七、K8s网络八、K8…...

【自然语言处理】大模型高效微调:PEFT 使用案例

文章目录 一、PEFT介绍二、PEFT 使用2.1 PeftConfig2.2 PeftModel2.3 保存和加载模型 三、PEFT支持任务3.1 Models support matrix3.1.1 Causal Language Modeling3.1.2 Conditional Generation3.1.3 Sequence Classification3.1.4 Token Classification3.1.5 Text-to-Image Ge…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

Docker拉取MySQL后数据库连接失败的解决方案

在使用Docker部署MySQL时&#xff0c;拉取并启动容器后&#xff0c;有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致&#xff0c;包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因&#xff0c;并提供解决方案。 一、确认MySQL容器的运行状态 …...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

【安全篇】金刚不坏之身:整合 Spring Security + JWT 实现无状态认证与授权

摘要 本文是《Spring Boot 实战派》系列的第四篇。我们将直面所有 Web 应用都无法回避的核心问题&#xff1a;安全。文章将详细阐述认证&#xff08;Authentication) 与授权&#xff08;Authorization的核心概念&#xff0c;对比传统 Session-Cookie 与现代 JWT&#xff08;JS…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...

聚六亚甲基单胍盐酸盐市场深度解析:现状、挑战与机遇

根据 QYResearch 发布的市场报告显示&#xff0c;全球市场规模预计在 2031 年达到 9848 万美元&#xff0c;2025 - 2031 年期间年复合增长率&#xff08;CAGR&#xff09;为 3.7%。在竞争格局上&#xff0c;市场集中度较高&#xff0c;2024 年全球前十强厂商占据约 74.0% 的市场…...

算法刷题-回溯

今天给大家分享的还是一道关于dfs回溯的问题&#xff0c;对于这类问题大家还是要多刷和总结&#xff0c;总体难度还是偏大。 对于回溯问题有几个关键点&#xff1a; 1.首先对于这类回溯可以节点可以随机选择的问题&#xff0c;要做mian函数中循环调用dfs&#xff08;i&#x…...