[LINUX使用] top 命令的使用
COLUMNS=150 LINES=100 top
| 序号 | 是否为启动命令 | 命令模板 | 详解 |
| 1 | no | vh | 帮助 |
| 2 | yes | -d 0.01 | 0.01秒的间隔刷新top输出 |
| 3 | no | c | COMMAND列切换 |
| 4 | yes | -e [k | m | g | t | p]
| 以何种计量单位显示内存列 k-kb,m-mb,g-gb,t-tb |
| 5 | yes | -i | 不显示idel状态的进程,即不占cpu的进程不会显示出来 |
| 6 | yes | -o [field name] | 启动就按照某个字段进行排序,不如 -o %CPU表示启动就以 cpu 使用率排序 |
| 7 | yes | -O | 列出 -o 选项所有可以使用的值 |
| 8 | yes | -p [N1, N2...]
| 跟踪某些进程号的进程,逗号隔开 非启动命令u取消此命令的筛选效果 |
| 9 | yes | -1 / -2 / -3 / -4 / ... | 跟踪具体某个CPU,不常用 |
| 10 | no | k | 向某个进程号的进程发送 signal , 按k后会要求先输入进程号,再要求输出信号值 |
| 11 | no | M / N / T / P | 按照 内存/PID/运行时间/CPU使用率 排序 |
| 12 | yes | -u [username] | 只罗列某个用户创建的进程 |
| 13 | no | t | 切换cpu统计显示的格式 |
|
| no | m | 切换内存统计显示的格式 |
| yes | -n | 只刷新n次就退出,用处不大 | |
| no | r | 改变某个进程的nice值 | |
| no | o | 对当前输出增加过滤条件,比如 %CPU>90.0 只显示所有CPU 大于 90%的进程。与-O配合使用 | |
|
| no | f | 自定义输出内容,上下focus到条目上,d用来改变是否显示,右抓起条目再通过上下来调整显示在哪一列,左来释放抓起状态从而将指定列安插到目标位置。 |
每一列的解释:
PID (Process Identification) - The process ID assigned to each task. This is assigned a unique number which is not assigned in numerical order, so it is normal to what appears to be a random selection of numbers.
PPID (Parent Process Identification) - PIDs can share a single PPID. A single process can create several child processes. Typically a PPID of 1 will be seen within this column however other values will be seen depending on the parent process which it was derived from. This also indicates that the process was derived from the Init process which is also referred to the grandfarther process. The PID is unique whereas the PPID can be a duplicate value.
USER - The process or task in which user it was created under. Since EXOS runs on a Linux platform, the root user is used within the core background.
STAT (State) - Represent the state of the process/task running. The state flags include:
S - sleeping
D - uninterruptible sleep
R - running
W - swapped out process
Z - zombies
T - stopped or traced
N - process with positive nice value
< - process with negative nice value
RSS (Resident Set Size) - The amount of memory total used for the task/process used. This statistical information is also show in further detail within the command show memory process <name>.
当前使用的物理内存
%MEM - The share of physical memory in percentage being used by the process/task.
使用的物理内存占使用的虚拟内存的百分之几
CPU - The physical processor being used. This can be represented by CPU0 or CPU1 depending on the CPU architecture type.
%CPU - The total CPU percentage in which is being used by the CPU. This is typical used to identify problematic process/tasks that could be overutilize the CPU.
相关文章:
[LINUX使用] top 命令的使用
COLUMNS150 LINES100 top 序号 是否为启动命令 命令模板 详解 1 no vh 帮助 2 yes -d 0.01 0.01秒的间隔刷新top输出 3 no c COMMAND列切换 4 yes -e [k | m | g | t | p] 以何种计量单位显示内存列 k-kb,m-mb,g-gb,t-t…...
通过redis进行缓存分页,通过SCAN扫描进行缓存更新
问题:当我们要添加缓存时,如果我们用了PageHelper时,PageHelper只会对查询语句有效(使用到sql的查询),那么如果我们把查询到的数据都添加到缓存时,就会无法进行分页; 此时我们选择将…...
C#小轮子 Debug,Release,发布模式如何运行不同的代码
文章目录 前言C#运行模式运行模式介绍三种模式区分代码 前言 编译模式和发布模式的代码不一样是非常正常的。比较常见的是数据库不一样。编译测试数据库和发布真实的数据库地址不一样。 C#运行模式 运行模式介绍 运行模式有三种: Debug 不进行优化,…...
【【萌新的STM32 学习-6】】
萌新的STM32 学习-6 BSP 文件夹,用于存放正点原子提供的板级支持包驱动代码,如:LED、蜂鸣器、按键等。 本章我们暂时用不到该文件夹,不过可以先建好备用。 CMSIS 文件夹,用于存放 CMSIS 底层代码(ARM 和 ST…...
“深入解析JVM:探索Java虚拟机的工作原理“
标题:深入解析JVM:探索Java虚拟机的工作原理 摘要:本文将深入解析Java虚拟机(JVM)的工作原理,从字节码到执行过程,从内存模型到垃圾回收机制,逐步剖析JVM的核心组成部分和工作原理。…...
【目标检测系列】YOLOV2解读
为更好理解YOLOv2模型,请先移步,了解YOLOv1后才能更好的理解YOLOv2所做的改进。 前情回顾:【目标检测系列】YOLOV1解读_怀逸%的博客-CSDN博客 背景 通用的目标检测应该具备快速、准确且能过识别各种各样的目标的特点。自从引入神经网络以来&a…...
【深入浅出程序设计竞赛(基础篇)第一章 算法小白从0开始】
深入浅出程序设计竞赛(基础篇)第一章 算法小白从0开始 第一章 例题例1-1例1-2例1-3例1-4例1-5例1-6例1-7例1-8例1-9例1-10例1-11 第一章 课后习题1-11-21-31-4 第一章 例题 例1-1 #include<iostream> using namespace std;int main(){cout <&…...
openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句
文章目录 openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句36.1 语法格式36.2 参数说明36.3 示例 openGauss学习笔记-36 openGauss 高级数据管理-TRUNCATE TABLE语句 清理表数据,TRUNCATE TABLE用于删除表的数据,但不删除表结构。也可以…...
ChatGPT生成文本检测器算法挑战大赛
ChatGPT生成文本检测器算法挑战大 比赛链接:2023 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn) 1、数据加载和预处理 import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, cross_val_predict from sklearn.linea…...
O2OA开发平台实施入门指南
O2OA(翱途)开发平台,是一款适用于协同办公系统开发与实施的基础平台,说到底,它也是一款快速开发平台。开发者可以基于平台提供的能力完成门户、流程、信息相关的业务功能开发。 既然定位为开发平台,那么开…...
服装行业多模态算法个性化产品定制方案 | 京东云技术团队
一、项目背景 AI赋能服装设计师,设计好看、好穿、好卖的服装 传统服装行业痛点 • 设计师无法准确捕捉市场趋势,抓住中国潮流 • 上新周期长,高库存滞销风险大 • 基本款居多,难以满足消费者个性化需求 解决方案 • GPT数据…...
MySQL表空间结构与页、区、段的定义
文章目录 一、概念引入1、页2、区3、段 二、页的结构1、File Header2、FIle Trailer 三、区的结构1、分类2、XDES Entry3、XDES Entry链表 四、段的结构五、独立表空间1、FSP_HDR页2、XDES页3、IBUF_BITMAP页4、INODE页5、INDEX页 六、系统表空间 一、概念引入 1、页 InnoDB是…...
RaabitMQ(三) - RabbitMQ队列类型、死信消息与死信队列、懒队列、集群模式、MQ常见消息问题
RabbitMQ队列类型 Classic经典队列 这是RabbitMQ最为经典的队列类型。在单机环境中,拥有比较高的消息可靠性。 经典队列可以选择是否持久化(Durability)以及是否自动删除(Auto delete)两个属性。 Durability有两个选项,Durable和Transient。 Durable表…...
Unity3D GPU Selector/Picker
Unity3D GPU Selector/Picker 一、概述 1.动机 Unity3D中通常情况下使用物理系统进行物体点击选择的基础,对于含大量对象的场景,添加Collider组件会增加内容占用,因此使用基于GPU的点击选择方案 2.实现思路 对于场景的每个物体,…...
灰度非线性变换之c++实现(qt + 不调包)
本章介绍灰度非线性变换,具体内容包括:对数变换、幂次变换、指数变换。他们的共同特点是使用非线性变换关系式进行图像变换。 1.灰度对数变换 变换公式:y a log(1x) / b,其中,a控制曲线的垂直移量;b为正…...
轻量级Web框架Flask
Flask-SQLAlchemy MySQL是免费开源软件,大家可以自行搜索其官网(https://www.MySQL.com/downloads/) 测试MySQL是否安装成功 在所有程序中,找到MySQL→MySQL Server 5.6下面的命令行工具,然后单击输入密码后回车&am…...
【gridsample】地平线如何支持gridsample算子
文章目录 1. grid_sample算子功能解析1.1 理论介绍1.2 代码分析1.2.1 x,y取值范围[-1,1]1.2.2 x,y取值范围超出[-1,1] 2. 使用grid_sample算子构建一个网络3. 走PTQ进行模型转换与编译 实操以J5 OE1.1.60对应的docker为例 1. grid_sample算子功能解析 该段主要参考:…...
JPA实现存储实体类型信息
本文已收录于专栏 《Java》 目录 背景介绍概念说明DiscriminatorValue 注解:DiscriminatorColumn 注解:Inheritance(strategy InheritanceType.SINGLE_TABLE) 注解: 实现方式父类子类执行效果 总结提升 背景介绍 在我们项目开发的过程中经常…...
阿里云快速部署开发环境 (Apache + Mysql8.0+Redis7.0.x)
本文章的内容截取于云服务器管理控制台提供的安装步骤,再整合前人思路而成,文章末端会提供原文连接 ApacheMysql 8.0部署MySQL数据库(Linux)步骤一:安装MySQL步骤二:配置MySQL步骤三:远程访问My…...
语音秘书:让录音转文字识别软件成为你的智能工作助手
每当在需要写文章的深夜,我的思绪经常跟不上我的笔,即便是说出来用录音机录下,再书写出来,也需要耗费大量时间。这个困扰了我很久的问题终于有了解决的办法,那就是录音转文字软件。它像个语言魔术师,将我所…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
