当前位置: 首页 > news >正文

Mel Frequency Cepstral Coefficients (MFCCs)

wiki里说
在声音处理中,梅尔频率倒谱( MFC ) 是声音的短期功率谱的表示,基于非线性梅尔频率标度上的对数功率谱的线性余弦变换。
倒谱和MFC 之间的区别在于,在 MFC 中,频带在梅尔尺度上等距分布,这比正常频谱中使用的线性间隔频带更接近人类听觉系统的响应。这种频率扭曲可以更好地表示声音,例如,在可能会降低传输带宽的音频压缩中以及音频信号的存储要求。
梅尔频率倒谱系数( MFCC ) 是共同构成 MFC 的系数。它们源自音频剪辑的一种倒谱表示。

信号的梅尔频率倒谱系数 (MFCC) 是一小组特征(通常为 10-20),它们简明地描述了 spectral envelope 的​​整体形状。在MIR中,它常被用来描述音色。
本文参考了Gender identification of a speaker using MFCC and GMM论文中描述的MFCC把语音转换为参数方法
将一个语音信号转换为MFCC要以下几个步骤:

在这里插入图片描述

  1. 预加重滤波器 pre-emphasis filter 滤波

让采样后的信号通过一个滤波器,并调整高低频率的强度。浊音区域的频谱通过预加重进行补偿,预加重会放大高频区域并执行滤波。简单描述实现就是:
在这里插入图片描述
α是滤波器的系数,常为0.95-0.97
但是这是很多年前因为有限的计算资源迫使开发人员创建的方法。
对于信号消歧而言,较高的频率比较低的频率更为重要。
在古早的时间里,应用模拟预加重滤波器会更容易获得好结果,因此大家都用了预加重。
预加重的另一个好特性是它有助于处理录音中经常出现的 DC offset 直流偏移,因此它可以改进基于能量的语音活动检测。
而现代语音识别不需要预加重。预加重在后期通过 channel normalization(如倒谱均值归一化)进行补偿,因此它应该根本没有影响。

预加重的好处:

  • 平衡频谱
  • 避免 Fourier transform 操作期间的数值问题
  • 改善信号噪声比 Signal-to-Noise Ratio (SNR)
  1. framing , 汉明窗Hamming window处理

与所有语音分析方法一样,MFCC 方法也适用于语音具有固定声学特征的短部分。即进行分帧framing,一帧有N个采样点:
这些部分通常选择为 20-30 毫秒,沿信号偏移 10-15 毫秒。
在大多数情况下,对整个信号进行傅里叶变换没有意义,因为会随着时间的推移丢失信号的频率轮廓(时序信息?)。通过对这个短时间帧进行傅立叶变换,我们可以通过连接相邻帧来获得信号频率轮廓的良好近似(这句话没怎么理解这个良好近似)。每一帧都包含其前一帧的一部分。
语音处理中的典型帧大小范围为 20 到 40 毫秒,连续帧之间有 50% (+/-10%) 的重叠。
通常的设置是:
帧大小为 25 ms,frame_size = 0.025 和 10 ms stride(15ms overlap ),frame_stride = 0.01。
在语音应用中,汉明窗通常是首选。其公式为:
在这里插入图片描述
可以用np.hamming

  1. 频率频谱图

语音信号被划分成分析窗口,通过FFT从时域变换到频域。这种表示语音信号频率分布的符号称为幅度谱。
amplitude spectrum / magnitude spectrum
我们现在可以做一个 N- 对每一帧进行点FFT计算频谱,也称为短时傅立叶变换(STFT),其中 N通常为 256 或 512,NFFT = 512;然后使用以下公式计算功率谱
在这里插入图片描述
也就是对每一帧进行FFT变换

  1. Mel-Frequency Warping

为了将获得的振幅谱转换为 mel-scale,使用相对于 mel-scale 线性放置的滤波器组。该组由重叠 50% 的三角形带通滤波器组成。一般滤波系数取值在20~30之间。

  1. 创建mel filter bank

mel filter的公式:
在这里插入图片描述
滤波组的公式:

  1. 计算log mel spectrum

计算滤波器组和频率频谱图的内积,再进行log计算
有点不懂的是他算的公式是20 * np.log10(fbank),有点不太清楚这个公式是哪里来的。感觉用librosa库的会多一些

  1. 离散余弦变换 (DCT)的 liftering

主要作用是对滤波器组进行去相关操作,丢弃除了自己设定的num_ceps以外的值,这些值代表滤波器组系数的快速变化,而这些细节对自动语音识别 (ASR) 没有什么帮助,然后将lift与mfcc相乘计算外积,以弱化较高的 MFCC,据称可以改善噪声信号中的语音识别
cep_lifter 是 Cepstral liftering order
num_ceps 是 number of cepstral coefficients (C1-C12, omitting C0)
lift = 1 + (cep_lifter / 2.0) * np.sin(np.pi * np.arange(num_ceps) / cep_lifter)

相关文章:

Mel Frequency Cepstral Coefficients (MFCCs)

wiki里说 在声音处理中,梅尔频率倒谱( MFC ) 是声音的短期功率谱的表示,基于非线性梅尔频率标度上的对数功率谱的线性余弦变换。 倒谱和MFC 之间的区别在于,在 MFC 中,频带在梅尔尺度上等距分布,这比正常频谱中使用的线…...

第七讲---贪心(上课)

1.股票买卖 一、贪心 考虑一种方案,在每次上升的前一天购入股票,并在上升后的当天卖出的方案 if (w[i] > w[i - 1])res w[i] - w[i - 1];接下来证明该贪心思路得出的方案即是最优解。 (1)证明贪心解 ≥ 最优解: …...

计算机如何思考与图灵完备

图灵完备是针对一套数据操作规则而言的概念,数据操作规则可以是一门编程语言,也可以是计算机实现里面的指令集,比如C/C++是图图灵完备的,通用CPU也是图灵完备的,但是GPU却不一定是图灵完备的。说白了图灵完备定义了一套规则,当这套规则可以实现图灵迹模型里的全部功能时,…...

惠普LaserJet M1005 MFP报错b2

故障现象: 惠普LaserJet M1005 MFP开机后直接报b2错误; 检测维修: 故障大意是:机器的硬件可能出现点突变,此问题建议联系当地维修中心进行处理。...

网络协议(TCP/IP)

目录一、网络分层模型二、OSI模型三、网络传输原理四、TCP/IP1、TCP/IP 原理2、TCP 三次握手/四次挥手3、Http协议和TCP/IP的区别五、HTTP原理六、HTTPS原理七、CDN原理一、网络分层模型 互联网的本质就是一系列的网络协议,最早由ISO国际组织定义为7层网络参考模型…...

2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书

2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书A模块基础设施设置/安全加固(200分)A-1:登录安全加固(Windows, Linux&#…...

6、流程控制

目录一、if二、switch三、for四、break与continue五、goto与Label一、if if使用:逻辑表达式成立,就会执行{}里的内容;逻辑表达式不需要加() if 5 > 9 {fmt.Println("5>9") }if句子中允许包含1个(仅1个)分号:在分…...

Linux中最基本常见命令总结

❤❤💛💛💚💚💙💙💜💜您的认可是对我最大的帮助💜💜💙💙💚💚💛💛❤❤ 🤎&…...

Python学习-----模块2.0(常用模块之时间模块-->time)

目录 前言: time简介 导入模块 1.时间戳 2.时间元组 (1)把时间戳转换为元组形式 (2)元组转换为时间戳输出 (3)把元组转换为格式化时间 (4)把时间戳转换为格式化时间…...

XXL-JOB分布式任务调度框架(二)-策略详解

文章目录1.引言2.任务详解2.1.执行器2.2.基础配置3.路由策略(第一个)-案例4.路由策略(最后一个)-案例5.轮询策略-案例6.随机选取7.轮询选取8.一致性hash9.最不经常使用 (LFU)10.最近最久未使用(LRU)11.故障转移12.忙碌转移13.分片广播任务14.父子任务15.…...

JAVA练习54-最小栈

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、题目-最小栈 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总结 前言 提示:这里可以添加本文要记录的大概内容: 2月18日练习内容…...

Redis-哨兵模式以及集群

在开始这部分内容之前需要先说一下复制功能,因为这是Redis实现主从数据同步的实现方式。复制功能如果存在两台服务器的话,我们可以使用redis的复制功能,让一台服务器去同步另一台服务器的数据。现在我启动了两台redis服务器,一个端…...

过滤器和监听器

1、过滤器Filter 作用是防止SQL注入、参数过滤、防止页面攻击、空参数矫正、Token校验、Session验证、点击率统计等等; 使用Filter的步骤 新建类,实现Filter抽象类;重写init、doFilter、destroy方法;在SpringBoot入口中添加注解…...

Acwing 第 91 场周赛

Powered by:NEFU AB-IN B站直播录像! Link 文章目录Acwing 第 91 场周赛A AcWing 4861. 构造数列题意思路代码B AcWing 4862. 浇花题意思路代码C AcWing 4863. 构造新矩阵题意思路代码Acwing 第 91 场周赛 A AcWing 4861. 构造数列 题意 略 思路 将每个数的每一位…...

JavaEE|套接字编程之UDP数据报

文章目录一、DatagramSocket API构造方法常用方法二、DatagramPacket API构造方法常用方法E1:回显服务器的实现E2:带有业务逻辑的请求发送一、DatagramSocket API 在操作系统中,把socket对象当成了一个文件处理。等价于是文件描述符表上的一项。 普通的文件&#xf…...

如何使用Python创建一个自定义视频播放器

目录 1、安装vlc的64位版本。 2、安装python的vlc模块。 3、编写如下代码,包含了播放,暂停,停止、音量控制功能。 4、来看一看运行结果。 5、如果遇到播放不了的问题,解决方式如下: 这个例子使用VLC作为视频播放器…...

Elasticsearch进行优化-使用索引拆分(Split)和索引收缩(shrink )

一、索引拆分和收缩的场景 在Elasticsearch集群部署的初期我们可能评估不到位,导致分配的主分片数量太少,单分片的数据量太大,导致搜索时性能下降,这时我们可以使用Elasticsearch提供的Split功能对当前的分片进行拆分&#xff0c…...

数论 —— 高斯记号(Gauss mark)

定义 数学上,高斯记号(Gauss mark)是指对取整符号和取小符号的统称,用于数论等领域。 设 x∈Rx \in \textbf{R}x∈R,用 [x][x][x] 表示不超过 xxx 的最大整数。也可记作 [x][x][x]。设 x∈Rx \in \textbf{R}x∈R&…...

【随笔】程序员眼中的 CPU,“没有灵魂的躯体”

引言 先引用一段比较有意思的论述: 现实中每个人是由两部分构成,灵魂和躯体,灵魂依附于躯体游走于世间,现实中我们面对的每个人其实面对的是其灵魂而非肉体,肉体不过是表象而已。 灵魂本性乃一恶物,寄生于…...

算法的时间复杂度

算法在编写成可执行程序后,运行时需要消耗时间资源和空间(内存)资源,因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的。 时间复杂度主要衡量一个算法运行的快慢,而空间复杂度主要衡量一个算法运…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...