当前位置: 首页 > news >正文

Mel Frequency Cepstral Coefficients (MFCCs)

wiki里说
在声音处理中,梅尔频率倒谱( MFC ) 是声音的短期功率谱的表示,基于非线性梅尔频率标度上的对数功率谱的线性余弦变换。
倒谱和MFC 之间的区别在于,在 MFC 中,频带在梅尔尺度上等距分布,这比正常频谱中使用的线性间隔频带更接近人类听觉系统的响应。这种频率扭曲可以更好地表示声音,例如,在可能会降低传输带宽的音频压缩中以及音频信号的存储要求。
梅尔频率倒谱系数( MFCC ) 是共同构成 MFC 的系数。它们源自音频剪辑的一种倒谱表示。

信号的梅尔频率倒谱系数 (MFCC) 是一小组特征(通常为 10-20),它们简明地描述了 spectral envelope 的​​整体形状。在MIR中,它常被用来描述音色。
本文参考了Gender identification of a speaker using MFCC and GMM论文中描述的MFCC把语音转换为参数方法
将一个语音信号转换为MFCC要以下几个步骤:

在这里插入图片描述

  1. 预加重滤波器 pre-emphasis filter 滤波

让采样后的信号通过一个滤波器,并调整高低频率的强度。浊音区域的频谱通过预加重进行补偿,预加重会放大高频区域并执行滤波。简单描述实现就是:
在这里插入图片描述
α是滤波器的系数,常为0.95-0.97
但是这是很多年前因为有限的计算资源迫使开发人员创建的方法。
对于信号消歧而言,较高的频率比较低的频率更为重要。
在古早的时间里,应用模拟预加重滤波器会更容易获得好结果,因此大家都用了预加重。
预加重的另一个好特性是它有助于处理录音中经常出现的 DC offset 直流偏移,因此它可以改进基于能量的语音活动检测。
而现代语音识别不需要预加重。预加重在后期通过 channel normalization(如倒谱均值归一化)进行补偿,因此它应该根本没有影响。

预加重的好处:

  • 平衡频谱
  • 避免 Fourier transform 操作期间的数值问题
  • 改善信号噪声比 Signal-to-Noise Ratio (SNR)
  1. framing , 汉明窗Hamming window处理

与所有语音分析方法一样,MFCC 方法也适用于语音具有固定声学特征的短部分。即进行分帧framing,一帧有N个采样点:
这些部分通常选择为 20-30 毫秒,沿信号偏移 10-15 毫秒。
在大多数情况下,对整个信号进行傅里叶变换没有意义,因为会随着时间的推移丢失信号的频率轮廓(时序信息?)。通过对这个短时间帧进行傅立叶变换,我们可以通过连接相邻帧来获得信号频率轮廓的良好近似(这句话没怎么理解这个良好近似)。每一帧都包含其前一帧的一部分。
语音处理中的典型帧大小范围为 20 到 40 毫秒,连续帧之间有 50% (+/-10%) 的重叠。
通常的设置是:
帧大小为 25 ms,frame_size = 0.025 和 10 ms stride(15ms overlap ),frame_stride = 0.01。
在语音应用中,汉明窗通常是首选。其公式为:
在这里插入图片描述
可以用np.hamming

  1. 频率频谱图

语音信号被划分成分析窗口,通过FFT从时域变换到频域。这种表示语音信号频率分布的符号称为幅度谱。
amplitude spectrum / magnitude spectrum
我们现在可以做一个 N- 对每一帧进行点FFT计算频谱,也称为短时傅立叶变换(STFT),其中 N通常为 256 或 512,NFFT = 512;然后使用以下公式计算功率谱
在这里插入图片描述
也就是对每一帧进行FFT变换

  1. Mel-Frequency Warping

为了将获得的振幅谱转换为 mel-scale,使用相对于 mel-scale 线性放置的滤波器组。该组由重叠 50% 的三角形带通滤波器组成。一般滤波系数取值在20~30之间。

  1. 创建mel filter bank

mel filter的公式:
在这里插入图片描述
滤波组的公式:

  1. 计算log mel spectrum

计算滤波器组和频率频谱图的内积,再进行log计算
有点不懂的是他算的公式是20 * np.log10(fbank),有点不太清楚这个公式是哪里来的。感觉用librosa库的会多一些

  1. 离散余弦变换 (DCT)的 liftering

主要作用是对滤波器组进行去相关操作,丢弃除了自己设定的num_ceps以外的值,这些值代表滤波器组系数的快速变化,而这些细节对自动语音识别 (ASR) 没有什么帮助,然后将lift与mfcc相乘计算外积,以弱化较高的 MFCC,据称可以改善噪声信号中的语音识别
cep_lifter 是 Cepstral liftering order
num_ceps 是 number of cepstral coefficients (C1-C12, omitting C0)
lift = 1 + (cep_lifter / 2.0) * np.sin(np.pi * np.arange(num_ceps) / cep_lifter)

相关文章:

Mel Frequency Cepstral Coefficients (MFCCs)

wiki里说 在声音处理中,梅尔频率倒谱( MFC ) 是声音的短期功率谱的表示,基于非线性梅尔频率标度上的对数功率谱的线性余弦变换。 倒谱和MFC 之间的区别在于,在 MFC 中,频带在梅尔尺度上等距分布,这比正常频谱中使用的线…...

第七讲---贪心(上课)

1.股票买卖 一、贪心 考虑一种方案,在每次上升的前一天购入股票,并在上升后的当天卖出的方案 if (w[i] > w[i - 1])res w[i] - w[i - 1];接下来证明该贪心思路得出的方案即是最优解。 (1)证明贪心解 ≥ 最优解: …...

计算机如何思考与图灵完备

图灵完备是针对一套数据操作规则而言的概念,数据操作规则可以是一门编程语言,也可以是计算机实现里面的指令集,比如C/C++是图图灵完备的,通用CPU也是图灵完备的,但是GPU却不一定是图灵完备的。说白了图灵完备定义了一套规则,当这套规则可以实现图灵迹模型里的全部功能时,…...

惠普LaserJet M1005 MFP报错b2

故障现象: 惠普LaserJet M1005 MFP开机后直接报b2错误; 检测维修: 故障大意是:机器的硬件可能出现点突变,此问题建议联系当地维修中心进行处理。...

网络协议(TCP/IP)

目录一、网络分层模型二、OSI模型三、网络传输原理四、TCP/IP1、TCP/IP 原理2、TCP 三次握手/四次挥手3、Http协议和TCP/IP的区别五、HTTP原理六、HTTPS原理七、CDN原理一、网络分层模型 互联网的本质就是一系列的网络协议,最早由ISO国际组织定义为7层网络参考模型…...

2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书

2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书A模块基础设施设置/安全加固(200分)A-1:登录安全加固(Windows, Linux&#…...

6、流程控制

目录一、if二、switch三、for四、break与continue五、goto与Label一、if if使用:逻辑表达式成立,就会执行{}里的内容;逻辑表达式不需要加() if 5 > 9 {fmt.Println("5>9") }if句子中允许包含1个(仅1个)分号:在分…...

Linux中最基本常见命令总结

❤❤💛💛💚💚💙💙💜💜您的认可是对我最大的帮助💜💜💙💙💚💚💛💛❤❤ 🤎&…...

Python学习-----模块2.0(常用模块之时间模块-->time)

目录 前言: time简介 导入模块 1.时间戳 2.时间元组 (1)把时间戳转换为元组形式 (2)元组转换为时间戳输出 (3)把元组转换为格式化时间 (4)把时间戳转换为格式化时间…...

XXL-JOB分布式任务调度框架(二)-策略详解

文章目录1.引言2.任务详解2.1.执行器2.2.基础配置3.路由策略(第一个)-案例4.路由策略(最后一个)-案例5.轮询策略-案例6.随机选取7.轮询选取8.一致性hash9.最不经常使用 (LFU)10.最近最久未使用(LRU)11.故障转移12.忙碌转移13.分片广播任务14.父子任务15.…...

JAVA练习54-最小栈

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 一、题目-最小栈 1.题目描述 2.思路与代码 2.1 思路 2.2 代码 总结 前言 提示:这里可以添加本文要记录的大概内容: 2月18日练习内容…...

Redis-哨兵模式以及集群

在开始这部分内容之前需要先说一下复制功能,因为这是Redis实现主从数据同步的实现方式。复制功能如果存在两台服务器的话,我们可以使用redis的复制功能,让一台服务器去同步另一台服务器的数据。现在我启动了两台redis服务器,一个端…...

过滤器和监听器

1、过滤器Filter 作用是防止SQL注入、参数过滤、防止页面攻击、空参数矫正、Token校验、Session验证、点击率统计等等; 使用Filter的步骤 新建类,实现Filter抽象类;重写init、doFilter、destroy方法;在SpringBoot入口中添加注解…...

Acwing 第 91 场周赛

Powered by:NEFU AB-IN B站直播录像! Link 文章目录Acwing 第 91 场周赛A AcWing 4861. 构造数列题意思路代码B AcWing 4862. 浇花题意思路代码C AcWing 4863. 构造新矩阵题意思路代码Acwing 第 91 场周赛 A AcWing 4861. 构造数列 题意 略 思路 将每个数的每一位…...

JavaEE|套接字编程之UDP数据报

文章目录一、DatagramSocket API构造方法常用方法二、DatagramPacket API构造方法常用方法E1:回显服务器的实现E2:带有业务逻辑的请求发送一、DatagramSocket API 在操作系统中,把socket对象当成了一个文件处理。等价于是文件描述符表上的一项。 普通的文件&#xf…...

如何使用Python创建一个自定义视频播放器

目录 1、安装vlc的64位版本。 2、安装python的vlc模块。 3、编写如下代码,包含了播放,暂停,停止、音量控制功能。 4、来看一看运行结果。 5、如果遇到播放不了的问题,解决方式如下: 这个例子使用VLC作为视频播放器…...

Elasticsearch进行优化-使用索引拆分(Split)和索引收缩(shrink )

一、索引拆分和收缩的场景 在Elasticsearch集群部署的初期我们可能评估不到位,导致分配的主分片数量太少,单分片的数据量太大,导致搜索时性能下降,这时我们可以使用Elasticsearch提供的Split功能对当前的分片进行拆分&#xff0c…...

数论 —— 高斯记号(Gauss mark)

定义 数学上,高斯记号(Gauss mark)是指对取整符号和取小符号的统称,用于数论等领域。 设 x∈Rx \in \textbf{R}x∈R,用 [x][x][x] 表示不超过 xxx 的最大整数。也可记作 [x][x][x]。设 x∈Rx \in \textbf{R}x∈R&…...

【随笔】程序员眼中的 CPU,“没有灵魂的躯体”

引言 先引用一段比较有意思的论述: 现实中每个人是由两部分构成,灵魂和躯体,灵魂依附于躯体游走于世间,现实中我们面对的每个人其实面对的是其灵魂而非肉体,肉体不过是表象而已。 灵魂本性乃一恶物,寄生于…...

算法的时间复杂度

算法在编写成可执行程序后,运行时需要消耗时间资源和空间(内存)资源,因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的。 时间复杂度主要衡量一个算法运行的快慢,而空间复杂度主要衡量一个算法运…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP(File Transfer Protocol)本身是一个基于 TCP 的协议,理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况,主要原因包括: ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...

在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例

目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...