当前位置: 首页 > news >正文

力扣(LeetCode)240. 搜索二维矩阵 II(C++)

题目描述dd

枚举

枚举整个矩阵,找到等于 target 的元素,则 return true ,否则 return false

class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int n = matrix.size(), m = matrix[0].size();for (auto &x : matrix)for (auto &t : x)if (t == target) return true;return false;}
};
  1. 时间复杂度 : O(n×m)O(n\times m)O(n×m)nnn 是数组的行数,mmm 是数组的列数,枚举所有元素,时间复杂度 O(n×m)O(n\times m)O(n×m)
  2. 空间复杂度 : O(1)O(1)O(1) , 只使用常量级空间 。

二分查找

二分优化枚举。按行枚举矩阵,由于每行元素有序,可以二分查找行内的元素。

class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int n = matrix.size(), m = matrix[0].size();for (auto &x : matrix) {int l = 0, r = m - 1;while(l <= r) {int mid = l + (r - l >> 1);if (x[mid] < target) l = mid + 1;else r = mid - 1;}if (l < m && x[l] == target) return true;}return false;}
};
  1. 时间复杂度 : O(nlogm)O(nlogm)O(nlogm)nnn 是数组的行数,mmm 是数组的列数,一次枚举一行,每行二分查找,时间复杂度 O(nlogm)O(nlogm)O(nlogm)
  2. 空间复杂度 : O(1)O(1)O(1) , 只使用常量级空间 。

枚举行列

更大胆的,同时枚举行列。这是由于每行元素有序,每列元素同样有序。

目的:保证被枚举元素与 target 的大小关系,对应唯一的移动方向

结论:从右上角枚举到左下角,根据右上角元素与 target 的大小关系,确定枚举的移动方向。

证明:右上角元素是一行的最大元素,一列的最小元素。往左下枚举,要找比他小的元素,只能同行往左;要找比他大的元素,只能同列向下。即
右上角元素 >\gt> target,往左;右上角元素 <\lt< target,往下。

朴素错法
  • 为什么从左上角枚举到右下角不行?
    答:左上角元素是一行的最小元素,一列的最小元素。往右下枚举,要找比他大的元素,不能确定往右还是往下。
class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int n = matrix.size(), m = matrix[0].size();int i = 0, j = m - 1;while(i < n && j >= 0) {if (matrix[i][j] > target) j --;else if (matrix[i][j] < target) i ++;else return true;}return false;}
};
  1. 时间复杂度 : O(n+m)O(n+m)O(n+m)nnn 是数组的行数,mmm 是数组的列数,一次枚举,移动一列或者一行,时间复杂度 O(n+m)O(n+m)O(n+m)
  2. 空间复杂度 : O(1)O(1)O(1) , 只使用常量级空间 。

AC

按行列枚举,执行结果。

AC

致语

  • 理解思路很重要
  • 读者有问题请留言,清墨看到就会回复的。

相关文章:

力扣(LeetCode)240. 搜索二维矩阵 II(C++)

题目描述 枚举 枚举整个矩阵&#xff0c;找到等于 target 的元素&#xff0c;则 return true &#xff0c;否则 return false。 class Solution { public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int n matrix.size(), m matrix[0]…...

golang defer

文章目录延迟函数的参数在defer语句出现时就已经确定下来了延迟函数没有入参时&#xff0c;延迟函数体内的变量会受到影响延迟函数 *可以* 修改主函数的 *具名* 返回值延迟函数 *无法* 修改主函数的 *匿名* 返回值defer会把声明的 延迟函数以及 函数的入参放到栈上&#xff0c;…...

【Java】线程的死锁和释放锁

线程死锁是线程同步的时候可能出现的一种问题 文章目录1. 线程的死锁1.1 基本介绍1.2 应用案例2. 释放锁2.1 下面的操作会释放锁2.2 下面的操作不会释放锁1. 线程的死锁 1.1 基本介绍 多个线程都占用了对方的锁资源&#xff0c;但不肯相让&#xff0c;导致了死锁&#xff0c;…...

如何使用断点续传上传大文件

概念 大文件上传的需求介绍 不管怎样简单的需求&#xff0c;在量级达到一定层次时&#xff0c;都会变得异常复杂。 文件上传简单&#xff0c;文件变大就复杂 上传大文件时&#xff0c;以下几个变量会影响我们的用户体验 服务器处理数据的能力请求超时网络波动 上传时间会变长…...

【图神经网络】图拉普拉斯滤波器如何实现全通、低通、高通滤波

【图神经网络】图拉普拉斯滤波器如何实现全通、低通、高通滤波 文章目录【图神经网络】图拉普拉斯滤波器如何实现全通、低通、高通滤波1. 前言2. 符号说明3. 三种滤波3.1 全通滤波3.2 低通滤波3.2.1 平滑信号分析3.2.2 广义拉普拉斯平滑滤波器3.3 高通滤波4. 总结1. 前言 GCN&…...

python操作mysql数据库详解

使用Python操作MySQL数据库 MySQL是一种关系型数据库管理系统&#xff0c;它可以用来存储和管理大量的数据。之前介绍了大部分主流数据库&#xff0c;今天将介绍如何使用Python来操作MySQL数据库。 安装MySQL 首先&#xff0c;我们需要安装MySQL服务器&#xff0c;可以从MyS…...

netty群聊系统

1设计思路&#xff1a;启动一个服务端&#xff0c;多个客户端第一个客户端启动时&#xff0c;会告诉服务器上线了第二个客户端启动时&#xff0c;告诉服务器上线&#xff0c;并且通知第一个启动的客户端第三个客户端启动时&#xff0c;告诉服务器上线&#xff0c;并且通知第一个…...

Android 初代 K-V 存储框架 SharedPreferences,旧时代的余晖?

本文已收录到 AndroidFamily&#xff0c;技术和职场问题&#xff0c;请关注公众号 [彭旭锐] 提问。 前言 大家好&#xff0c;我是小彭。 SharedPreferences 是 Android 平台上轻量级的 K-V 存储框架&#xff0c;亦是初代 K-V 存储框架&#xff0c;至今被很多应用沿用。 有的…...

在windows中使用tomcat搭建Jenkins

1、 准备环境&#xff1a;JDK JDK官网下载&#xff1a;https://download.oracle.com/java/19/latest/jdk-19_windows-x64_bin.msi 2、 tomcat包 tocat官网下载&#xff1a;https://tomcat.apache.org/download-90.cgi 3、 Jenkins.war包 Jenkins官网下载&#xff1a;https://mi…...

Linux系统

linux系统 世界上最重要的服务器端操作系统。 创建新目录 mkdir app mkdir -m 目录权限 目录名 创建有权限的目录名。 创建一个空白文件 touch app.txt创建一个文件。 cat创建一个文件。 vi/vim创建一个文件。 nano创建一个文件。 truncate创建一个文件。 pwd查看当前目录。 rm…...

Mel Frequency Cepstral Coefficients (MFCCs)

wiki里说 在声音处理中&#xff0c;梅尔频率倒谱( MFC ) 是声音的短期功率谱的表示&#xff0c;基于非线性梅尔频率标度上的对数功率谱的线性余弦变换。 倒谱和MFC 之间的区别在于&#xff0c;在 MFC 中&#xff0c;频带在梅尔尺度上等距分布&#xff0c;这比正常频谱中使用的线…...

第七讲---贪心(上课)

1.股票买卖 一、贪心 考虑一种方案&#xff0c;在每次上升的前一天购入股票&#xff0c;并在上升后的当天卖出的方案 if (w[i] > w[i - 1])res w[i] - w[i - 1];接下来证明该贪心思路得出的方案即是最优解。 &#xff08;1&#xff09;证明贪心解 ≥ 最优解&#xff1a; …...

计算机如何思考与图灵完备

图灵完备是针对一套数据操作规则而言的概念,数据操作规则可以是一门编程语言,也可以是计算机实现里面的指令集,比如C/C++是图图灵完备的,通用CPU也是图灵完备的,但是GPU却不一定是图灵完备的。说白了图灵完备定义了一套规则,当这套规则可以实现图灵迹模型里的全部功能时,…...

惠普LaserJet M1005 MFP报错b2

故障现象: 惠普LaserJet M1005 MFP开机后直接报b2错误; 检测维修: 故障大意是:机器的硬件可能出现点突变,此问题建议联系当地维修中心进行处理。...

网络协议(TCP/IP)

目录一、网络分层模型二、OSI模型三、网络传输原理四、TCP/IP1、TCP/IP 原理2、TCP 三次握手/四次挥手3、Http协议和TCP/IP的区别五、HTTP原理六、HTTPS原理七、CDN原理一、网络分层模型 互联网的本质就是一系列的网络协议&#xff0c;最早由ISO国际组织定义为7层网络参考模型…...

2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书

2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书2023河南省第二届职业技能大赛郑州市选拔赛“网络安全” 项目比赛样题任务书A模块基础设施设置/安全加固&#xff08;200分&#xff09;A-1&#xff1a;登录安全加固&#xff08;Windows, Linux&#…...

6、流程控制

目录一、if二、switch三、for四、break与continue五、goto与Label一、if if使用&#xff1a;逻辑表达式成立&#xff0c;就会执行{}里的内容&#xff1b;逻辑表达式不需要加() if 5 > 9 {fmt.Println("5>9") }if句子中允许包含1个(仅1个)分号&#xff1a;在分…...

Linux中最基本常见命令总结

❤❤&#x1f49b;&#x1f49b;&#x1f49a;&#x1f49a;&#x1f499;&#x1f499;&#x1f49c;&#x1f49c;您的认可是对我最大的帮助&#x1f49c;&#x1f49c;&#x1f499;&#x1f499;&#x1f49a;&#x1f49a;&#x1f49b;&#x1f49b;❤❤ &#x1f90e;&…...

Python学习-----模块2.0(常用模块之时间模块-->time)

目录 前言&#xff1a; time简介 导入模块 1.时间戳 2.时间元组 &#xff08;1&#xff09;把时间戳转换为元组形式 &#xff08;2&#xff09;元组转换为时间戳输出 &#xff08;3&#xff09;把元组转换为格式化时间 &#xff08;4&#xff09;把时间戳转换为格式化时间…...

XXL-JOB分布式任务调度框架(二)-策略详解

文章目录1.引言2.任务详解2.1.执行器2.2.基础配置3.路由策略(第一个)-案例4.路由策略(最后一个)-案例5.轮询策略-案例6.随机选取7.轮询选取8.一致性hash9.最不经常使用 (LFU)10.最近最久未使用&#xff08;LRU&#xff09;11.故障转移12.忙碌转移13.分片广播任务14.父子任务15.…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...