当前位置: 首页 > news >正文

线性表中的时间复杂度

线性表

一、顺序表示的线性表

  1. 插入操作的时间复杂度
    • 最好情况: O ( 1 ) O(1) O(1)。(新元素插到表尾,不需要移动元素)
    • 最坏情况: O ( n ) O(n) O(n)。(新元素插到表头,需要将原有的n个元素全部向后移动)
    • 平均情况: O ( n ) O(n) O(n)。(假设新元素插到每个位置的概率相同 ( p = 1 n + 1 ) (p=\frac{1}{n+1}) (p=n+11),则平均循环次数为 n p + ( n − 1 ) p + . . . + 1 p = n ( n + 1 ) 2 1 n + 1 = n 2 np+(n-1)p+...+1p=\frac{n(n+1)}{2}\frac{1}{n+1}=\frac{n}{2} np+(n1)p+...+1p=2n(n+1)n+11=2n
  2. 删除操作
    • 最好情况: O ( 1 ) O(1) O(1)。(删除表尾元素,不需要移动其他元素)
    • 最坏情况: O ( n ) O(n) O(n)。(删除表头元素,需要将后序的n-1个元素全部向前移动)
    • 平均情况: O ( n ) O(n) O(n)。(假设删除任何一个元素的概率相同 ( p = 1 n ) (p=\frac{1}{n}) (p=n1),则平均循环次数为 ( n − 1 ) p + ( n − 2 ) p + . . . + 1 p = n ( n − 1 ) 2 1 n = n − 1 2 (n-1)p+(n-2)p+...+1p=\frac{n(n-1)}{2}\frac{1}{n}=\frac{n-1}{2} (n1)p+(n2)p+...+1p=2n(n1)n1=2n1
  3. 按位查找: O ( 1 ) O(1) O(1)(由于顺序表各个数据元素在内存中连续存放,因此可以根据起始地址和数据元素大小立即找到第i个元素–“随机存取”特性)
  4. 按值查找:
    • 最好情况: O ( 1 ) O(1) O(1)。(目标元素在表头)
    • 最坏情况: O ( n ) O(n) O(n)。(目标元素在表尾)
    • 平均情况: O ( n ) O(n) O(n)。(假设目标元素出现在任何一个位置的概率相同 ( p = 1 n ) (p=\frac{1}{n}) (p=n1),则平均循环次数为 1 p + 2 p + . . . + n p = n ( n + 1 ) 2 1 n = n + 1 2 1p+2p+...+np=\frac{n(n+1)}{2}\frac{1}{n}=\frac{n+1}{2} 1p+2p+...+np=2n(n+1)n1=2n+1

二、链式表示的线性表

单链表

  1. 插入:
    • 按位序插入
      • 最好情况: O ( 1 ) O(1) O(1)(插在表头)
      • 最坏情况: O ( n ) O(n) O(n)(插在表尾)
      • 平均情况: O ( n ) O(n) O(n)
    • 指定节点的后插操作: O ( 1 ) O(1) O(1)
    • 指定节点的前插操作:
      • O ( n ) O(n) O(n)(循环查找指定节点p的前驱q,再对q后插)
      • O ( 1 ) O(1) O(1)(若在p节点前插入s,则先将s插到p后面,再交换p和s的数据域)
  2. 删除:
    • 按位序删除
      • 最好情况: O ( 1 ) O(1) O(1)
      • 最坏、平均情况: O ( n ) O(n) O(n)
    • 指定节点的删除: O ( 1 ) O(1) O(1)
  3. 查找
    • 按位查找:平均情况 O ( n ) O(n) O(n)
    • 按值查找:平均情况 O ( n ) O(n) O(n)
  4. 求表长: O ( n ) O(n) O(n)
  5. 单链表的建立
    • 头插法:(插入n个节点的时间复杂度为) O ( n ) O(n) O(n)
    • 尾插法:
      • 若不带表尾指针,则每次插入都从头遍历,时间复杂度为 O ( n 2 ) O(n^2) O(n2)
      • 若设置一个表尾指针,则为 O ( n ) O(n) O(n)

双链表

与单链表一样,双链表不可随机存取,按位查找、按值查找都只能用遍历的方式实现,时间复杂度 O ( n ) O(n) O(n)

循环链表

  1. 从尾部找到头部,时间复杂度是 O ( 1 ) O(1) O(1);从头节点找到尾部,时间复杂度是 O ( n ) O(n) O(n)

一、顺序存储实现的栈

基本操作(创建、增、删、查)都是 O ( 1 ) O(1) O(1)的时间复杂度
对于栈的销毁,在函数运行结束后由系统自动回收内存

相关文章:

线性表中的时间复杂度

线性表 一、顺序表示的线性表 插入操作的时间复杂度 最好情况: O ( 1 ) O(1) O(1)。(新元素插到表尾,不需要移动元素)最坏情况: O ( n ) O(n) O(n)。(新元素插到表头,需要将原有的n个元素全部…...

ensp与虚拟机搭建测试环境

1.虚拟机配置 ①首先确定VMnet8 IP地址,若要修改IP地址,保证在启动Ensp前操作 ②尽量保证NAT模式 2.ensp配置 (1)拓扑结构 (2)Cloud配置 ①首先点击 绑定信息 UDP → 增加 ②然后点击 绑定信息 VMware ... → 增加 ③最后在 端口映射设置上点击双向通…...

linux内核中的 指针 和 unsigned long

文章目录 1.指针的来源2.指针的定义:3.字长和数据类型4.Linux内核为什么常用unsigned long来替代指针?参考资料 1.指针的来源 方便引用一个内存地址。 给定一个内存地址,CPU就可以取出该地址的数据。 给定一个内存地址,CPU就可以…...

STM32--GPIO

文章目录 GPIO简介GPIO的基本结构GPIO位结构GPIO模式LED和蜂鸣器LED闪烁工程及程序原码代码: 蜂鸣器工程和程序原码代码 传感器光敏传感器控制蜂鸣器工程代码 GPIO简介 GPIO(General Purpose Input Output)是通用输入/输出口的简称。它是一种…...

剑指 Offer ! 61. 扑克牌中的顺子

参考资料:力扣K神的讲解 剑指 Offer 61. 扑克牌中的顺子 简单 351 相关企业 从若干副扑克牌中随机抽 5 张牌,判断是不是一个顺子,即这5张牌是不是连续的。2~10为数字本身,A为1,J为11,Q为12&…...

《玩转Python数据分析专栏》大纲

欢迎来到《玩转Python数据分析分类专栏》!在这个专栏中,我们将带您深入探索数据分析的世界,以Python为工具,解析各个领域的实际应用场景。通过100篇教程,我们将逐步引领您从入门级到高级,从基础知识到实战技巧,助您成为一名优秀的数据分析师。 专栏目标 本专栏旨在帮助…...

Zabbix自动注册服务器及部署代理服务器

文章目录 一.zabbix自动注册1.什么是自动注册2.环境准备3.zabbix客户端配置4.在 Web 页面配置自动注册5.验证自动注册 二.部署 zabbix 代理服务器1.分布式监控的作用:2.环境部署3.代理服务器配置4.客户端配置5.web页面配置5.1 删除原来配置5.2 添加代理5.3 创建主机…...

SpringBoot下使用自定义监听事件

事件机制是Spring的一个功能,目前我们使用了SpringBoot框架,所以记录下事件机制在SpringBoot框架下的使用,同时实现异步处理。事件机制其实就是使用了观察者模式(发布-订阅模式)。 Spring的事件机制经过如下流程: 1、自定义事件…...

并发编程面试题1

并发编程面试题1 一、原子性高频问题: 1.1 Java中如何实现线程安全? 多线程操作共享数据出现的问题。 锁: 悲观锁:synchronized,lock乐观锁:CAS 可以根据业务情况,选择ThreadLocal,让每个…...

【对于一维信号的匹配】对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

【Oracle 数据库 SQL 语句 】积累1

Oracle 数据库 SQL 语句 1、分组之后再合计2、显示不为空的值 1、分组之后再合计 关键字: grouping sets ((分组字段1,分组字段2),()) select sylbdm ,count(sylbmc) a…...

Django中级指南:理解并实现Django的模型和数据库迁移

Django 是一个极其强大的 Python Web 框架,它提供了许多工具和特性,能够帮助我们更快速、更便捷地构建 Web 应用。在本文中,我们将会关注 Django 中的模型(Models)和数据库迁移(Database Migrations&#x…...

Chatgpt API调用报错:openai.error.RateLimitError

Chatgpt API 调用报错: openai.error.RateLimitError: You exceeded your current quota, please check your plan and billing details. 调用OpenAI API接口 import openai import osopenai.api_key os.getenv("OPENAI_API_KEY")result openai.Chat…...

一键获取数百张免费商用人脸!AI人脸生成器来袭

随着科技的发展,人工智能正在渗透到生活的各个角落,设计行业也不例外。在网页、APP、PPT 等界面设计中,设计师经常需要插入真实的人脸素材,以增强作品的真实感和场景化。但是获取素材既不容易,质量和价格也难免成为设计…...

跳跃游戏 II——力扣45

文章目录 题目描述解法一 贪心题目描述 解法一 贪心 int jump(vector<int>& nums){in...

Stable Diffusion - 常用的负向提示 Embeddings 解析与 坐姿 (Sitting) 提示词

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132145248 负向 Embeddings 是用于提高 StableDiffusion 生成图像质量的技术&#xff0c;可以避免生成一些不符合预期的图像特征&#xff0c;比如…...

工厂方法模式(一):C#实现指南

工厂方法模式是一种创建型设计模式&#xff0c;用于处理对象的创建问题。通过使用工厂方法模式&#xff0c;我们可以将对象的创建过程与使用过程分离&#xff0c;从而增加代码的灵活性和可维护性。 工厂方法模式的定义 工厂方法模式定义了一个创建对象的接口&#xff0c;但由子…...

Spring接口InitializingBean的作用和使用介绍

在Spring框架中&#xff0c;InitializingBean接口是一个回调接口&#xff0c;用于在Spring容器实例化Bean并设置Bean的属性之后&#xff0c;执行一些自定义的初始化逻辑。实现InitializingBean接口的Bean可以在初始化阶段进行一些必要的操作&#xff0c;比如数据的初始化、资源…...

Excel---成绩相同者,名次并列排列,三步搞定

需求&#xff1a;一张成绩表&#xff0c;共341行(340条数据&#xff0c;第一条为标题)&#xff0c;根据成绩进行排序&#xff0c;成绩相同进行名次并列 一、选择生成结果的位置&#xff0c;我这里点击了一下E2单元格 二、公式—>插入–>rank函数 数值&#xff1a;D2 表示…...

Elasticsearch6.x和7.x的区别

Elasticsearch6.x和7.x的区别 1、查找方面的区别 在增删改方面&#xff0c;6.x和7.x是一样的&#xff0c;在查找方面&#xff08;分为普通查找和有高亮的查找&#xff09;&#xff0c;6.x和7.x有区别。 在7.x的es中&#xff1a; org.springframework.data.elasticsearch.cor…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

解析“道作为序位生成器”的核心原理

解析“道作为序位生成器”的核心原理 以下完整展开道函数的零点调控机制&#xff0c;重点解析"道作为序位生成器"的核心原理与实现框架&#xff1a; 一、道函数的零点调控机制 1. 道作为序位生成器 道在认知坐标系$(x_{\text{物}}, y_{\text{意}}, z_{\text{文}}…...

ThreadLocal 源码

ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物&#xff0c;因为每个访问一个线程局部变量的线程&#xff08;通过其 get 或 set 方法&#xff09;都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段&#xff0c;这些类希望将…...